Suppr超能文献

嗜热生物阴极催化产电甲烷化过程中的生物电化学分析。

Bioelectrochemical analyses of the development of a thermophilic biocathode catalyzing electromethanogenesis.

出版信息

Environ Sci Technol. 2015 Jan 20;49(2):1225-32. doi: 10.1021/es5052233.

Abstract

The use of thermophilic microorganisms as biocatalysts for electromethanogenesis was investigated. Single-chamber reactors inoculated with thermophiles and operated at 55 °C showed high CH4 production rates (max. 1103 mmol m(–2) day(–1) at an applied voltage of 0.8 V) with current-capture efficiencies >90%, indicating that thermophiles have high potential as biocatalysts. To improve the electromethanogenic activity, the developed biocathode was transferred to a two-chamber reactor and operated at a poised potential of −0.5 V vs SHE. The CH4 production rates of the biocathode were enhanced approximately 6-fold in 160 h of poised-potential incubation, indicating that the acclimation of the biocathode resulted in performance improvement. Compositional alteration of the cathodic microbiota suggested that a Methanothermobacter-related methanogen and synergistetes- and thermotogae-related bacteria were selected during the acclimation. Cyclic voltammetry of the “acclimated” biocathode showed an augmented cathodic catalytic wave with a midpoint potential at ca. −0.35 V vs SHE. Moreover, the biocathode was able to catalyze electromethanogenesis at −0.35 V vs SHE. These results suggested that the ability of the biocathode to catalyze electromethanogenesis via direct electron transfer was enhanced by the acclimation. This study provides new technological and fundamental information on electromethanogenic bioelectrochemical systems (BESs) that may be extended to other BESs.

摘要

研究了嗜热微生物作为电甲烷生成生物催化剂的应用。在 55°C 下运行的单室反应器接种嗜热菌,在 0.8 V 的外加电压下显示出高 CH4 生成速率(最大 1103 mmol m(–2) day(–1)),电流捕获效率>90%,表明嗜热菌作为生物催化剂具有很高的潜力。为了提高电甲烷生成活性,开发的生物阴极被转移到双室反应器中,并在相对于 SHE 的-0.5 V 稳定电势下运行。在稳定电势孵育 160 h 后,生物阴极的 CH4 生成速率提高了约 6 倍,表明生物阴极的驯化导致了性能的提高。阴极微生物群的组成变化表明,在驯化过程中选择了一种 Methanothermobacter 相关的产甲烷菌以及协同菌和热球菌相关的细菌。“驯化”生物阴极的循环伏安法显示出增强的阴极催化波,其中点电势约为相对于 SHE 的-0.35 V。此外,生物阴极能够在相对于 SHE 的-0.35 V 下催化电甲烷生成。这些结果表明,通过驯化,生物阴极通过直接电子转移催化电甲烷生成的能力得到了增强。本研究为电甲烷生成生物电化学系统(BES)提供了新的技术和基础信息,这些信息可能会扩展到其他 BES。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验