Suppr超能文献

混合培养生物阴极生物电化学CO转化及甲烷生成的温度依赖性

Temperature dependence of bioelectrochemical CO conversion and methane production with a mixed-culture biocathode.

作者信息

Yang Hou-Yun, Bao Bai-Ling, Liu Jing, Qin Yuan, Wang Yi-Ran, Su Kui-Zu, Han Jun-Cheng, Mu Yang

机构信息

CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China.

CAS Key Laboratory of Urban Pollutant Conversion, Collaborative Innovation Centre of Suzhou Nano Science and Technology, Department of Chemistry, University of Science and Technology of China, Hefei, China; Department of Civil Engineering, Hefei University of Technology, Hefei 230009, China.

出版信息

Bioelectrochemistry. 2018 Feb;119:180-188. doi: 10.1016/j.bioelechem.2017.10.002. Epub 2017 Oct 2.

Abstract

This study evaluated the effect of temperature on methane production by CO reduction during microbial electrosynthesis (MES) with a mixed-culture biocathode. Reactor performance, in terms of the amount and rate of methane production, current density, and coulombic efficiency, was compared at different temperatures. The microbial properties of the biocathode at each temperature were also analyzed by 16S rRNA gene sequencing. The results showed that the optimum temperature for methane production from CO reduction in MES with a mixed-culture cathode was 50°C, with the highest amount and rate of methane production of 2.06±0.13mmol and 0.094±0.01mmolh, respectively. In the mixed-culture biocathode MES, the coulombic efficiency of methane formation was within a range of 19.15±2.31% to 73.94±2.18% due to by-product formation at the cathode, including volatile fatty acids and hydrogen. Microbial analysis demonstrated that temperature had an impact on the diversity of microbial communities in the biofilm that formed on the MES cathode. Specifically, the hydrogenotrophic methanogen Methanobacterium became the predominant archaea for methane production from CO reduction, while the abundance of the aceticlastic methanogen Methanosaeta decreased with increased temperature.

摘要

本研究评估了温度对混合培养生物阴极微生物电合成(MES)过程中通过一氧化碳还原产生甲烷的影响。在不同温度下比较了反应器性能,包括甲烷产生量和速率、电流密度以及库仑效率。还通过16S rRNA基因测序分析了每个温度下生物阴极的微生物特性。结果表明,混合培养阴极的MES中,通过一氧化碳还原产生甲烷的最佳温度为50°C,甲烷产生量和速率最高,分别为2.06±0.13mmol和0.094±0.01mmol/h。在混合培养生物阴极MES中,由于阴极副产物的形成,包括挥发性脂肪酸和氢气,甲烷形成的库仑效率在19.15±2.31%至73.94±2.18%范围内。微生物分析表明,温度对MES阴极上形成的生物膜中微生物群落的多样性有影响。具体而言,氢营养型产甲烷菌甲烷杆菌成为通过一氧化碳还原产生甲烷的主要古菌,而乙酸营养型产甲烷菌甲烷八叠球菌的丰度随温度升高而降低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验