Suppr超能文献

全长M2蛋白的C末端近膜区域形成一个与膜表面相关的两亲性螺旋。

C-terminal juxtamembrane region of full-length M2 protein forms a membrane surface associated amphipathic helix.

作者信息

Huang Shenstone, Green Bryan, Thompson Megan, Chen Richard, Thomaston Jessica, DeGrado William F, Howard Kathleen P

机构信息

Department of Chemistry and Biochemistry, Swarthmore College, Swarthmore, Pennsylvania, 19081.

出版信息

Protein Sci. 2015 Mar;24(3):426-9. doi: 10.1002/pro.2631. Epub 2015 Jan 14.

Abstract

The influenza A M2 protein is a 97-residue integral membrane protein involved in viral budding and proton conductance. Although crystal and NMR structures exist of truncated constructs of the protein, there is disagreement between models and only limited structural data are available for the full-length protein. Here, the structure of the C-terminal juxtamembrane region (sites 50-60) is investigated in the full-length M2 protein using site-directed spin-labeling electron paramagnetic resonance (EPR) spectroscopy in lipid bilayers. Sites 50-60 were chosen for study because this region has been shown to be critical to the role the M2 protein plays in viral budding. Continuous wave EPR spectra and power saturation data in the presence of paramagnetic membrane soluble oxygen are consistent with a membrane surface associated amphipathic helix. Comparison between data from the C-terminal juxtamembrane region in full-length M2 protein with data from a truncated M2 construct demonstrates that the line shapes and oxygen accessibilities are remarkably similar between the full-length and truncated form of the protein.

摘要

甲型流感病毒M2蛋白是一种由97个氨基酸组成的整合膜蛋白,参与病毒出芽和质子传导。尽管已有该蛋白截短结构的晶体结构和核磁共振结构,但不同模型之间存在分歧,且关于全长蛋白的结构数据有限。在此,利用脂质双层中的定点自旋标记电子顺磁共振(EPR)光谱,对全长M2蛋白的C端近膜区(50-60位点)结构进行了研究。选择50-60位点进行研究是因为该区域已被证明对M2蛋白在病毒出芽中所起的作用至关重要。在存在顺磁性膜可溶性氧的情况下,连续波EPR光谱和功率饱和数据与膜表面相关的两亲性螺旋一致。全长M2蛋白C端近膜区的数据与截短的M2构建体的数据比较表明,该蛋白的全长形式和截短形式之间的线形和氧可及性非常相似。

相似文献

1
C-terminal juxtamembrane region of full-length M2 protein forms a membrane surface associated amphipathic helix.
Protein Sci. 2015 Mar;24(3):426-9. doi: 10.1002/pro.2631. Epub 2015 Jan 14.
2
Isotropic bicelles stabilize the juxtamembrane region of the influenza M2 protein for solution NMR studies.
Biochemistry. 2013 Nov 26;52(47):8420-9. doi: 10.1021/bi401035m. Epub 2013 Nov 14.
3
Influenza A M2 protein conformation depends on choice of model membrane.
Biopolymers. 2015 Jul;104(4):405-11. doi: 10.1002/bip.22617.
4
The distal cytoplasmic tail of the influenza A M2 protein dynamically extends from the membrane.
Biochim Biophys Acta Biomembr. 2019 Aug 1;1861(8):1421-1427. doi: 10.1016/j.bbamem.2019.05.021. Epub 2019 May 30.
8
Cholesterol-Dependent Conformational Exchange of the C-Terminal Domain of the Influenza A M2 Protein.
Biochemistry. 2015 Dec 15;54(49):7157-67. doi: 10.1021/acs.biochem.5b01065. Epub 2015 Nov 30.
10
Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR.
Proc Natl Acad Sci U S A. 2017 Dec 5;114(49):12946-12951. doi: 10.1073/pnas.1715127114. Epub 2017 Nov 20.

引用本文的文献

1
Conformation and Membrane Topology of the N-Terminal Ectodomain of Influenza A M2 Protein.
Membranes (Basel). 2025 Feb 1;15(2):40. doi: 10.3390/membranes15020040.
3
Cholesterol and M2 Rendezvous in Budding and Scission of Influenza A Virus.
Subcell Biochem. 2023;106:441-459. doi: 10.1007/978-3-031-40086-5_16.
4
Clustering of tetrameric influenza M2 peptides in lipid bilayers investigated by F solid-state NMR.
Biochim Biophys Acta Biomembr. 2022 Jul 1;1864(7):183909. doi: 10.1016/j.bbamem.2022.183909. Epub 2022 Mar 8.
5
Emulating Membrane Protein Environments─How Much Lipid Is Required for a Native Structure: Influenza S31N M2.
J Am Chem Soc. 2022 Feb 9;144(5):2137-2148. doi: 10.1021/jacs.1c10174. Epub 2022 Jan 28.
6
Mechanism and Kinetics of Copper Complexes Binding to the Influenza A M2 S31N and S31N/G34E Channels.
Biophys J. 2021 Jan 5;120(1):168-177. doi: 10.1016/j.bpj.2020.11.016. Epub 2020 Nov 26.
7
The distal cytoplasmic tail of the influenza A M2 protein dynamically extends from the membrane.
Biochim Biophys Acta Biomembr. 2019 Aug 1;1861(8):1421-1427. doi: 10.1016/j.bbamem.2019.05.021. Epub 2019 May 30.
8
Optimization of Detergent-Mediated Reconstitution of Influenza A M2 Protein into Proteoliposomes.
Membranes (Basel). 2018 Nov 8;8(4):103. doi: 10.3390/membranes8040103.
10
Cholesterol-Dependent Conformational Exchange of the C-Terminal Domain of the Influenza A M2 Protein.
Biochemistry. 2015 Dec 15;54(49):7157-67. doi: 10.1021/acs.biochem.5b01065. Epub 2015 Nov 30.

本文引用的文献

2
Solid state NMR: The essential technology for helical membrane protein structural characterization.
J Magn Reson. 2014 Feb;239:100-9. doi: 10.1016/j.jmr.2013.12.006. Epub 2013 Dec 19.
3
Isotropic bicelles stabilize the juxtamembrane region of the influenza M2 protein for solution NMR studies.
Biochemistry. 2013 Nov 26;52(47):8420-9. doi: 10.1021/bi401035m. Epub 2013 Nov 14.
4
Viral membrane scission.
Annu Rev Cell Dev Biol. 2013;29:551-69. doi: 10.1146/annurev-cellbio-101011-155838. Epub 2013 May 31.
5
Conformational analysis of the full-length M2 protein of the influenza A virus using solid-state NMR.
Protein Sci. 2013 Nov;22(11):1623-38. doi: 10.1002/pro.2368. Epub 2013 Oct 7.
6
Influenza virus A M2 protein generates negative Gaussian membrane curvature necessary for budding and scission.
J Am Chem Soc. 2013 Sep 18;135(37):13710-9. doi: 10.1021/ja400146z. Epub 2013 Sep 6.
10
Structural and dynamic mechanisms for the function and inhibition of the M2 proton channel from influenza A virus.
Curr Opin Struct Biol. 2011 Feb;21(1):68-80. doi: 10.1016/j.sbi.2010.12.002. Epub 2011 Jan 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验