Suppr超能文献

铁氢物种的氢含量与催化二氧化碳加氢反应

Hydricity of an Fe-H Species and Catalytic CO2 Hydrogenation.

作者信息

Fong Henry, Peters Jonas C

机构信息

Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.

出版信息

Inorg Chem. 2015 Jun 1;54(11):5124-35. doi: 10.1021/ic502508p. Epub 2014 Dec 31.

Abstract

Despite renewed interest in carbon dioxide (CO2) reduction chemistry, examples of homogeneous iron catalysts that hydrogenate CO2 are limited compared to their noble-metal counterparts. Knowledge of the thermodynamic properties of iron hydride complexes, including M-H hydricities (ΔGH(-)), could aid in the development of new iron-based catalysts. Here we present the experimentally determined hydricity of an iron hydride complex: (SiP(iPr)3)Fe(H2)(H), ΔGH(-) = 54.3 ± 0.9 kcal/mol [SiP(iPr)3 = Si(o-C6H4PiPr2)3]. We also explore the CO2 hydrogenation chemistry of a series of triphosphinoiron complexes, each with a distinct apical unit on the ligand chelate (Si(-), C(-), PhB(-), N, B). The silyliron (SiP(R)3)Fe (R = iPr and Ph) and boratoiron (PhBP(iPr)3)Fe (PhBP(iPr)3 = PhB(CH2PiPr2)3) systems, as well as the recently reported (CP(iPr)3)Fe (CP(iPr)3 = C(o-C6H4PiPr2)3), are also catalysts for CO2 hydrogenation in methanol and in the presence of triethylamine, generating methylformate and triethylammonium formate at up to 200 TON using (SiP(Ph)3)FeCl as the precatalyst. Under stoichiometric conditions, the iron hydride complexes of this series react with CO2 to give formate complexes. Finally, the proposed mechanism of the (SiP(iPr)3)-Fe system proceeds through a monohydride intermediate (SiP(iPr)3)Fe(H2)(H), in contrast to that of the known and highly active tetraphosphinoiron, (tetraphos)Fe (tetraphos = P(o-C6H4PPh2)3), CO2 hydrogenation catalyst.

摘要

尽管人们对二氧化碳(CO₂)还原化学重新产生了兴趣,但与贵金属同类催化剂相比,能够使CO₂氢化的均相铁催化剂的实例仍然有限。了解氢化铁配合物的热力学性质,包括M-H氢负离子转移能(ΔGH(-)),有助于开发新型铁基催化剂。在此,我们展示了通过实验测定的一种氢化铁配合物的氢负离子转移能:(SiP(iPr)₃)Fe(H₂)(H),ΔGH(-) = 54.3 ± 0.9 kcal/mol [SiP(iPr)₃ = Si(o-C₆H₄PiPr₂)₃]。我们还探索了一系列三膦基铁配合物的CO₂氢化化学,每个配合物在配体螯合物上都有一个独特的顶端单元(Si(⁻)、C(⁻)、PhB(⁻)、N、B)。硅基铁(SiP(R)₃)Fe(R = iPr和Ph)和硼基铁(PhBP(iPr)₃)Fe(PhBP(iPr)₃ = PhB(CH₂PiPr₂)₃)体系,以及最近报道的(CP(iPr)₃)Fe(CP(iPr)₃ = C(o-C₆H₄PiPr₂)₃),在甲醇中以及三乙胺存在的情况下也是CO₂氢化的催化剂,以(SiP(Ph)₃)FeCl作为预催化剂时,能生成高达200 TON的甲酸甲酯和三乙铵甲酸盐。在化学计量条件下,该系列的氢化铁配合物与CO₂反应生成甲酸根配合物。最后,(SiP(iPr)₃)-Fe体系的 proposed mechanism 通过单氢化物中间体(SiP(iPr)₃)Fe(H₂)(H)进行,这与已知的高活性四膦基铁(tetraphos)Fe(tetraphos = P(o-C₆H₄PPh₂)₃)的CO₂氢化催化剂不同。 (注:原文中“proposed mechanism”未明确给出中文释义,可根据上下文理解为“提出的机理”之类的意思,这里保留英文以便准确传达原文信息。)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验