Fong Henry, Peters Jonas C
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
Inorg Chem. 2015 Jun 1;54(11):5124-35. doi: 10.1021/ic502508p. Epub 2014 Dec 31.
Despite renewed interest in carbon dioxide (CO2) reduction chemistry, examples of homogeneous iron catalysts that hydrogenate CO2 are limited compared to their noble-metal counterparts. Knowledge of the thermodynamic properties of iron hydride complexes, including M-H hydricities (ΔGH(-)), could aid in the development of new iron-based catalysts. Here we present the experimentally determined hydricity of an iron hydride complex: (SiP(iPr)3)Fe(H2)(H), ΔGH(-) = 54.3 ± 0.9 kcal/mol [SiP(iPr)3 = Si(o-C6H4PiPr2)3]. We also explore the CO2 hydrogenation chemistry of a series of triphosphinoiron complexes, each with a distinct apical unit on the ligand chelate (Si(-), C(-), PhB(-), N, B). The silyliron (SiP(R)3)Fe (R = iPr and Ph) and boratoiron (PhBP(iPr)3)Fe (PhBP(iPr)3 = PhB(CH2PiPr2)3) systems, as well as the recently reported (CP(iPr)3)Fe (CP(iPr)3 = C(o-C6H4PiPr2)3), are also catalysts for CO2 hydrogenation in methanol and in the presence of triethylamine, generating methylformate and triethylammonium formate at up to 200 TON using (SiP(Ph)3)FeCl as the precatalyst. Under stoichiometric conditions, the iron hydride complexes of this series react with CO2 to give formate complexes. Finally, the proposed mechanism of the (SiP(iPr)3)-Fe system proceeds through a monohydride intermediate (SiP(iPr)3)Fe(H2)(H), in contrast to that of the known and highly active tetraphosphinoiron, (tetraphos)Fe (tetraphos = P(o-C6H4PPh2)3), CO2 hydrogenation catalyst.
尽管人们对二氧化碳(CO₂)还原化学重新产生了兴趣,但与贵金属同类催化剂相比,能够使CO₂氢化的均相铁催化剂的实例仍然有限。了解氢化铁配合物的热力学性质,包括M-H氢负离子转移能(ΔGH(-)),有助于开发新型铁基催化剂。在此,我们展示了通过实验测定的一种氢化铁配合物的氢负离子转移能:(SiP(iPr)₃)Fe(H₂)(H),ΔGH(-) = 54.3 ± 0.9 kcal/mol [SiP(iPr)₃ = Si(o-C₆H₄PiPr₂)₃]。我们还探索了一系列三膦基铁配合物的CO₂氢化化学,每个配合物在配体螯合物上都有一个独特的顶端单元(Si(⁻)、C(⁻)、PhB(⁻)、N、B)。硅基铁(SiP(R)₃)Fe(R = iPr和Ph)和硼基铁(PhBP(iPr)₃)Fe(PhBP(iPr)₃ = PhB(CH₂PiPr₂)₃)体系,以及最近报道的(CP(iPr)₃)Fe(CP(iPr)₃ = C(o-C₆H₄PiPr₂)₃),在甲醇中以及三乙胺存在的情况下也是CO₂氢化的催化剂,以(SiP(Ph)₃)FeCl作为预催化剂时,能生成高达200 TON的甲酸甲酯和三乙铵甲酸盐。在化学计量条件下,该系列的氢化铁配合物与CO₂反应生成甲酸根配合物。最后,(SiP(iPr)₃)-Fe体系的 proposed mechanism 通过单氢化物中间体(SiP(iPr)₃)Fe(H₂)(H)进行,这与已知的高活性四膦基铁(tetraphos)Fe(tetraphos = P(o-C₆H₄PPh₂)₃)的CO₂氢化催化剂不同。 (注:原文中“proposed mechanism”未明确给出中文释义,可根据上下文理解为“提出的机理”之类的意思,这里保留英文以便准确传达原文信息。)