Suppr超能文献

相似文献

1
Conformational preferences underlying reduced activity of a thermophilic ribonuclease H.
J Mol Biol. 2015 Feb 27;427(4):853-866. doi: 10.1016/j.jmb.2014.11.023. Epub 2014 Dec 27.
2
Quantifying the Relationship between Conformational Dynamics and Enzymatic Activity in Ribonuclease HI Homologues.
Biochemistry. 2020 Sep 8;59(35):3201-3205. doi: 10.1021/acs.biochem.0c00500. Epub 2020 Aug 24.
3
Enzyme dynamics from NMR spectroscopy.
Acc Chem Res. 2015 Feb 17;48(2):457-65. doi: 10.1021/ar500340a. Epub 2015 Jan 9.
4
Multiple time scale backbone dynamics of homologous thermophilic and mesophilic ribonuclease HI enzymes.
J Mol Biol. 2004 Jun 11;339(4):855-71. doi: 10.1016/j.jmb.2004.03.055.
5
Comparison of the folding processes of T. thermophilus and E. coli ribonucleases H.
J Mol Biol. 2002 Feb 15;316(2):327-40. doi: 10.1006/jmbi.2001.5346.
6
An inserted Gly residue fine tunes dynamics between mesophilic and thermophilic ribonucleases H.
Protein Sci. 2006 Dec;15(12):2697-707. doi: 10.1110/ps.062398606. Epub 2006 Nov 6.
10
Native-state energetics of a thermostabilized variant of ribonuclease HI.
J Mol Biol. 2001 Dec 7;314(4):863-71. doi: 10.1006/jmbi.2001.5184.

引用本文的文献

1
Parsing Dynamics of Protein Backbone NH and Side-Chain Methyl Groups using Molecular Dynamics Simulations.
J Chem Theory Comput. 2024 Jul 23;20(14):6316-6327. doi: 10.1021/acs.jctc.4c00378. Epub 2024 Jul 3.
2
AbMelt: Learning antibody thermostability from molecular dynamics.
Biophys J. 2024 Sep 3;123(17):2921-2933. doi: 10.1016/j.bpj.2024.06.003. Epub 2024 Jun 7.
3
Detection of chemical exchange in methyl groups of macromolecules.
J Biomol NMR. 2019 Sep;73(8-9):443-450. doi: 10.1007/s10858-019-00240-w. Epub 2019 Aug 12.
4
Validating Molecular Dynamics Simulations against Experimental Observables in Light of Underlying Conformational Ensembles.
J Phys Chem B. 2018 Jul 5;122(26):6673-6689. doi: 10.1021/acs.jpcb.8b02144. Epub 2018 Jun 21.
5
Thermostability of Enzymes from Molecular Dynamics Simulations.
J Chem Theory Comput. 2016 Jun 14;12(6):2489-92. doi: 10.1021/acs.jctc.6b00120. Epub 2016 May 6.

本文引用的文献

1
Evidence from molecular dynamics simulations of conformational preorganization in the ribonuclease H active site.
F1000Res. 2014 Mar 7;3:67. doi: 10.12688/f1000research.3605.1. eCollection 2014.
2
Both protein dynamics and ligand concentration can shift the binding mechanism between conformational selection and induced fit.
Proc Natl Acad Sci U S A. 2014 Jul 15;111(28):10197-202. doi: 10.1073/pnas.1407545111. Epub 2014 Jun 30.
3
Combined mechanism of conformational selection and induced fit in U1A-RNA molecular recognition.
Biochemistry. 2014 Jun 10;53(22):3646-57. doi: 10.1021/bi401708q. Epub 2014 May 27.
4
The RNase H-like superfamily: new members, comparative structural analysis and evolutionary classification.
Nucleic Acids Res. 2014 Apr;42(7):4160-79. doi: 10.1093/nar/gkt1414. Epub 2014 Jan 23.
5
Side chain dynamics of carboxyl and carbonyl groups in the catalytic function of Escherichia coli ribonuclease H.
J Am Chem Soc. 2013 Dec 4;135(48):18024-7. doi: 10.1021/ja409479y. Epub 2013 Nov 20.
6
Thermal adaptation of conformational dynamics in ribonuclease H.
PLoS Comput Biol. 2013;9(10):e1003218. doi: 10.1371/journal.pcbi.1003218. Epub 2013 Oct 3.
8
Functional significance of evolving protein sequence in dihydrofolate reductase from bacteria to humans.
Proc Natl Acad Sci U S A. 2013 Jun 18;110(25):10159-64. doi: 10.1073/pnas.1307130110. Epub 2013 Jun 3.
9
Thermostabilization of the β1-adrenergic receptor correlates with increased entropy of the inactive state.
J Phys Chem B. 2013 Jun 20;117(24):7283-91. doi: 10.1021/jp403207c. Epub 2013 Jun 5.
10
Interpreting protein structural dynamics from NMR chemical shifts.
J Am Chem Soc. 2012 Apr 11;134(14):6365-74. doi: 10.1021/ja300265w. Epub 2012 Mar 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验