Suppr超能文献

从 NMR 化学位移推断蛋白质结构动力学。

Interpreting protein structural dynamics from NMR chemical shifts.

机构信息

Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.

出版信息

J Am Chem Soc. 2012 Apr 11;134(14):6365-74. doi: 10.1021/ja300265w. Epub 2012 Mar 28.

Abstract

In this investigation, semiempirical NMR chemical shift prediction methods are used to evaluate the dynamically averaged values of backbone chemical shifts obtained from unbiased molecular dynamics (MD) simulations of proteins. MD-averaged chemical shift predictions generally improve agreement with experimental values when compared to predictions made from static X-ray structures. Improved chemical shift predictions result from population-weighted sampling of multiple conformational states and from sampling smaller fluctuations within conformational basins. Improved chemical shift predictions also result from discrete changes to conformations observed in X-ray structures, which may result from crystal contacts, and are not always reflective of conformational dynamics in solution. Chemical shifts are sensitive reporters of fluctuations in backbone and side chain torsional angles, and averaged (1)H chemical shifts are particularly sensitive reporters of fluctuations in aromatic ring positions and geometries of hydrogen bonds. In addition, poor predictions of MD-averaged chemical shifts can identify spurious conformations and motions observed in MD simulations that may result from force field deficiencies or insufficient sampling and can also suggest subsets of conformational space that are more consistent with experimental data. These results suggest that the analysis of dynamically averaged NMR chemical shifts from MD simulations can serve as a powerful approach for characterizing protein motions in atomistic detail.

摘要

在这项研究中,我们使用半经验 NMR 化学位移预测方法来评估从蛋白质无偏分子动力学 (MD) 模拟中获得的骨架化学位移的动态平均值。与从静态 X 射线结构进行的预测相比,MD 平均化学位移预测通常可以提高与实验值的一致性。改善的化学位移预测结果来自于对多个构象状态的加权抽样,以及对构象盆地内较小波动的抽样。改善的化学位移预测还来自于 X 射线结构中观察到的构象的离散变化,这些变化可能是由于晶体接触引起的,并不总是反映溶液中的构象动力学。化学位移是骨架和侧链扭转角波动的敏感报告者,平均 (1)H 化学位移特别敏感于芳香环位置和氢键几何形状的波动。此外,MD 平均化学位移的预测不佳可以识别 MD 模拟中观察到的虚假构象和运动,这些可能是由于力场缺陷或采样不足引起的,也可以提示与实验数据更一致的构象空间子集。这些结果表明,从 MD 模拟中分析动态平均 NMR 化学位移可以作为一种强大的方法来描述原子细节中的蛋白质运动。

相似文献

1
Interpreting protein structural dynamics from NMR chemical shifts.
J Am Chem Soc. 2012 Apr 11;134(14):6365-74. doi: 10.1021/ja300265w. Epub 2012 Mar 28.
2
PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles.
J Biomol NMR. 2012 Nov;54(3):257-65. doi: 10.1007/s10858-012-9668-8. Epub 2012 Sep 13.
3
Experimental verification of force fields for molecular dynamics simulations using Gly-Pro-Gly-Gly.
J Phys Chem B. 2010 Sep 30;114(38):12358-75. doi: 10.1021/jp101581h.
7
Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins.
J Biomol NMR. 2015 Jan;61(1):35-45. doi: 10.1007/s10858-014-9879-2. Epub 2014 Nov 22.
8
Quantum-mechanics-derived 13Calpha chemical shift server (CheShift) for protein structure validation.
Proc Natl Acad Sci U S A. 2009 Oct 6;106(40):16972-7. doi: 10.1073/pnas.0908833106. Epub 2009 Sep 8.
10
Mapping of protein structural ensembles by chemical shifts.
J Biomol NMR. 2010 Oct;48(2):71-83. doi: 10.1007/s10858-010-9438-4. Epub 2010 Aug 1.

引用本文的文献

1
Decoding phospho-regulation and flanking regions in autophagy-associated short linear motifs.
Commun Biol. 2025 Aug 20;8(1):1255. doi: 10.1038/s42003-025-08399-9.
3
Advancing F NMR Prediction of Metal-Fluoride Complexes in Solution: Insights from Ab Initio Molecular Dynamics.
J Phys Chem A. 2024 Dec 12;128(49):10498-10506. doi: 10.1021/acs.jpca.4c05408. Epub 2024 Dec 3.
5
Predicted and Experimental NMR Chemical Shifts at Variable Temperatures: The Effect of Protein Conformational Dynamics.
J Phys Chem Lett. 2024 Feb 29;15(8):2270-2278. doi: 10.1021/acs.jpclett.3c02589. Epub 2024 Feb 21.
6
Molecular basis for curvature formation in SepF polymerization.
Proc Natl Acad Sci U S A. 2024 Feb 27;121(9):e2316922121. doi: 10.1073/pnas.2316922121. Epub 2024 Feb 21.
7
Resolution in cryogenic solid state NMR: Challenges and solutions.
Protein Sci. 2024 Jul;33(7):e4803. doi: 10.1002/pro.4803.
8
Simulation Reveals the Chameleonic Behavior of Macrocycles.
J Chem Inf Model. 2023 Jan 9;63(1):138-146. doi: 10.1021/acs.jcim.2c01093. Epub 2022 Dec 23.
9
Global protein dynamics as communication sensors in peptide synthetase domains.
Sci Adv. 2022 Jul 15;8(28):eabn6549. doi: 10.1126/sciadv.abn6549.
10
Electronic Polarization at the Interface between the p53 Transactivation Domain and Two Binding Partners.
J Phys Chem B. 2022 Jul 7;126(26):4814-4827. doi: 10.1021/acs.jpcb.2c02268. Epub 2022 Jun 24.

本文引用的文献

1
Definitive Benchmark Study of Ring Current Effects on Amide Proton Chemical Shifts.
J Chem Theory Comput. 2011 Jul 12;7(7):2078-84. doi: 10.1021/ct2002607. Epub 2011 Jun 9.
2
Iterative Optimization of Molecular Mechanics Force Fields from NMR Data of Full-Length Proteins.
J Chem Theory Comput. 2011 Jun 14;7(6):1773-82. doi: 10.1021/ct200094b. Epub 2011 May 5.
4
Using side-chain aromatic proton chemical shifts for a quantitative analysis of protein structures.
Angew Chem Int Ed Engl. 2011 Oct 4;50(41):9620-3. doi: 10.1002/anie.201101641. Epub 2011 Sep 2.
5
Structure-based prediction of methyl chemical shifts in proteins.
J Biomol NMR. 2011 Aug;50(4):331-46. doi: 10.1007/s10858-011-9524-2. Epub 2011 Jul 12.
7
SHIFTX2: significantly improved protein chemical shift prediction.
J Biomol NMR. 2011 May;50(1):43-57. doi: 10.1007/s10858-011-9478-4. Epub 2011 Mar 30.
8
NMR-based protein potentials.
Angew Chem Int Ed Engl. 2010 Sep 10;49(38):6778-80. doi: 10.1002/anie.201001898.
9
Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins.
Structure. 2010 Aug 11;18(8):923-33. doi: 10.1016/j.str.2010.04.016.
10
SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network.
J Biomol NMR. 2010 Sep;48(1):13-22. doi: 10.1007/s10858-010-9433-9. Epub 2010 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验