Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA.
J Am Chem Soc. 2012 Apr 11;134(14):6365-74. doi: 10.1021/ja300265w. Epub 2012 Mar 28.
In this investigation, semiempirical NMR chemical shift prediction methods are used to evaluate the dynamically averaged values of backbone chemical shifts obtained from unbiased molecular dynamics (MD) simulations of proteins. MD-averaged chemical shift predictions generally improve agreement with experimental values when compared to predictions made from static X-ray structures. Improved chemical shift predictions result from population-weighted sampling of multiple conformational states and from sampling smaller fluctuations within conformational basins. Improved chemical shift predictions also result from discrete changes to conformations observed in X-ray structures, which may result from crystal contacts, and are not always reflective of conformational dynamics in solution. Chemical shifts are sensitive reporters of fluctuations in backbone and side chain torsional angles, and averaged (1)H chemical shifts are particularly sensitive reporters of fluctuations in aromatic ring positions and geometries of hydrogen bonds. In addition, poor predictions of MD-averaged chemical shifts can identify spurious conformations and motions observed in MD simulations that may result from force field deficiencies or insufficient sampling and can also suggest subsets of conformational space that are more consistent with experimental data. These results suggest that the analysis of dynamically averaged NMR chemical shifts from MD simulations can serve as a powerful approach for characterizing protein motions in atomistic detail.
在这项研究中,我们使用半经验 NMR 化学位移预测方法来评估从蛋白质无偏分子动力学 (MD) 模拟中获得的骨架化学位移的动态平均值。与从静态 X 射线结构进行的预测相比,MD 平均化学位移预测通常可以提高与实验值的一致性。改善的化学位移预测结果来自于对多个构象状态的加权抽样,以及对构象盆地内较小波动的抽样。改善的化学位移预测还来自于 X 射线结构中观察到的构象的离散变化,这些变化可能是由于晶体接触引起的,并不总是反映溶液中的构象动力学。化学位移是骨架和侧链扭转角波动的敏感报告者,平均 (1)H 化学位移特别敏感于芳香环位置和氢键几何形状的波动。此外,MD 平均化学位移的预测不佳可以识别 MD 模拟中观察到的虚假构象和运动,这些可能是由于力场缺陷或采样不足引起的,也可以提示与实验数据更一致的构象空间子集。这些结果表明,从 MD 模拟中分析动态平均 NMR 化学位移可以作为一种强大的方法来描述原子细节中的蛋白质运动。