Suppr超能文献

AbMelt:从分子动力学角度学习抗体热稳定性。

AbMelt: Learning antibody thermostability from molecular dynamics.

机构信息

Modeling and Informatics, Merck & Co., Inc., South San Francisco, California.

Modeling and Informatics, Merck & Co., Inc., South San Francisco, California.

出版信息

Biophys J. 2024 Sep 3;123(17):2921-2933. doi: 10.1016/j.bpj.2024.06.003. Epub 2024 Jun 7.

Abstract

Antibody thermostability is challenging to predict from sequence and/or structure. This difficulty is likely due to the absence of direct entropic information. Herein, we present AbMelt where we model the inherent flexibility of homologous antibody structures using molecular dynamics simulations at three temperatures and learn the relevant descriptors to predict the temperatures of aggregation (T), melt onset (T), and melt (T). We observed that the radius of gyration deviation of the complementarity determining regions at 400 K is the highest Pearson correlated descriptor with aggregation temperature (r = -0.68 ± 0.23) and the deviation of internal molecular contacts at 350 K is the highest correlated descriptor with both T (r = -0.74 ± 0.04) as well as T (r = -0.69 ± 0.03). Moreover, after descriptor selection and machine learning regression, we predict on a held-out test set containing both internal and public data and achieve robust performance for all endpoints compared with baseline models (T R = 0.57 ± 0.11, T R = 0.56 ± 0.01, and T R = 0.60 ± 0.06). In addition, the robustness of the AbMelt molecular dynamics methodology is demonstrated by only training on <5% of the data and outperforming more traditional machine learning models trained on the entire data set of more than 500 internal antibodies. Users can predict thermostability measurements for antibody variable fragments by collecting descriptors and using AbMelt, which has been made available.

摘要

抗体热稳定性难以从序列和/或结构上进行预测。这种困难可能是由于缺乏直接的熵信息。在此,我们提出了 AbMelt,我们使用分子动力学模拟在三个温度下对同源抗体结构的固有灵活性进行建模,并学习相关描述符来预测聚集温度 (T)、起始熔化温度 (T) 和熔化温度 (T)。我们观察到,在 400 K 时互补决定区的回转半径偏差是与聚集温度相关性最高的 Pearson 描述符(r = -0.68 ± 0.23),而在 350 K 时内部分子接触的偏差是与 T 相关性最高的描述符(r = -0.74 ± 0.04)以及 T(r = -0.69 ± 0.03)。此外,在进行描述符选择和机器学习回归后,我们在包含内部和公共数据的独立测试集中进行预测,并与基线模型相比,在所有终点都实现了稳健的性能(T R= 0.57 ± 0.11、T R= 0.56 ± 0.01 和 T R= 0.60 ± 0.06)。此外,AbMelt 分子动力学方法的稳健性仅通过在 <5%的数据上进行训练并优于在包含 500 多个内部抗体的整个数据集上进行训练的更传统的机器学习模型来证明。用户可以通过收集描述符并使用 AbMelt 来预测抗体可变片段的热稳定性测量值,该方法已经公开。

相似文献

1
AbMelt: Learning antibody thermostability from molecular dynamics.
Biophys J. 2024 Sep 3;123(17):2921-2933. doi: 10.1016/j.bpj.2024.06.003. Epub 2024 Jun 7.
4
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2021 Apr 19;4(4):CD011535. doi: 10.1002/14651858.CD011535.pub4.
5
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.
Cochrane Database Syst Rev. 2022 May 20;5(5):CD013665. doi: 10.1002/14651858.CD013665.pub3.
6
Systemic pharmacological treatments for chronic plaque psoriasis: a network meta-analysis.
Cochrane Database Syst Rev. 2020 Jan 9;1(1):CD011535. doi: 10.1002/14651858.CD011535.pub3.
7
Antibody tests for identification of current and past infection with SARS-CoV-2.
Cochrane Database Syst Rev. 2022 Nov 17;11(11):CD013652. doi: 10.1002/14651858.CD013652.pub2.
9
The Black Book of Psychotropic Dosing and Monitoring.
Psychopharmacol Bull. 2024 Jul 8;54(3):8-59.
10
Anterior Approach Total Ankle Arthroplasty with Patient-Specific Cut Guides.
JBJS Essent Surg Tech. 2025 Aug 15;15(3). doi: 10.2106/JBJS.ST.23.00027. eCollection 2025 Jul-Sep.

引用本文的文献

1
Prediction of protein biophysical traits from limited data: a case study on nanobody thermostability through NanoMelt.
MAbs. 2025 Dec;17(1):2442750. doi: 10.1080/19420862.2024.2442750. Epub 2025 Jan 8.
2
The Application of Machine Learning on Antibody Discovery and Optimization.
Molecules. 2024 Dec 16;29(24):5923. doi: 10.3390/molecules29245923.
3
Machine learning tools advance biophysics.
Biophys J. 2024 Sep 3;123(17):E1-E3. doi: 10.1016/j.bpj.2024.07.036. Epub 2024 Aug 21.

本文引用的文献

2
ImmuneBuilder: Deep-Learning models for predicting the structures of immune proteins.
Commun Biol. 2023 May 29;6(1):575. doi: 10.1038/s42003-023-04927-7.
3
AbLang: an antibody language model for completing antibody sequences.
Bioinform Adv. 2022 Jun 17;2(1):vbac046. doi: 10.1093/bioadv/vbac046. eCollection 2022.
5
Improving antibody thermostability based on statistical analysis of sequence and structural consensus data.
Antib Ther. 2022 Jul 22;5(3):202-210. doi: 10.1093/abt/tbac017. eCollection 2022 Jul.
6
A computational algorithm to assess the physiochemical determinants of T cell receptor dissociation kinetics.
Comput Struct Biotechnol J. 2022 Jun 25;20:3473-3481. doi: 10.1016/j.csbj.2022.06.048. eCollection 2022.
7
Computational design of a cutinase for plastic biodegradation by mining molecular dynamics simulations trajectories.
Comput Struct Biotechnol J. 2022 Jan 5;20:459-470. doi: 10.1016/j.csbj.2021.12.042. eCollection 2022.
9
Antibodies to watch in 2022.
MAbs. 2022 Jan-Dec;14(1):2014296. doi: 10.1080/19420862.2021.2014296.
10
Adaptive machine learning for protein engineering.
Curr Opin Struct Biol. 2022 Feb;72:145-152. doi: 10.1016/j.sbi.2021.11.002. Epub 2021 Dec 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验