Jones Michael David, Martin Philip S, Williams Jonathan M, Kemp Alison M, Theobald Peter
Cardiff School of Engineering, Cardiff University, Cardiff, UK
Cardiff School of Engineering, Cardiff University, Cardiff, UK.
Med Sci Law. 2015 Oct;55(4):291-9. doi: 10.1177/0025802414564495. Epub 2014 Dec 30.
The inertial loading thresholds for infant head injury are of profound medico-legal and safety-engineering significance. Injurious experimentation with infants is impossible, and physical and computational biomechanical modelling has been frustrated by a paucity of paediatric biomechanical data. This study describes the development of a computational infant model (MD Adams®) by combining radiological, kinematic, mechanical modelling and literature-based data. Previous studies have suggested the neck as critical in determining inertial head loading. The biomechanical effects of varying neck stiffness parameters during simulated shakes were investigated, measuring peak translational and rotational accelerations and rotational velocities at the vertex. A neck quasi-static stiffness of 0.6 Nm/deg and lowest rate-dependent stiffness predisposed the model infant head to the highest accelerations. Plotted against scaled infant injury tolerance curves, simulations produced head accelerations commensurate with those produced during simulated physical model shaking reported in the literature. The model provides a computational platform for the exploitation of improvements in head biofidelity for investigating a wider range of injurious scenarios.
婴儿头部受伤的惯性负荷阈值具有深远的医学法律和安全工程意义。对婴儿进行伤害性实验是不可能的,而且由于儿科生物力学数据匮乏,物理和计算生物力学建模一直受到阻碍。本研究描述了通过结合放射学、运动学、力学建模和基于文献的数据来开发一个计算婴儿模型(MD Adams®)的过程。先前的研究表明,颈部在确定惯性头部负荷方面至关重要。研究了在模拟摇晃过程中改变颈部刚度参数的生物力学效应,测量了顶点处的峰值平移和旋转加速度以及旋转速度。颈部准静态刚度为0.6 Nm/deg且最低的速率依赖性刚度使模型婴儿头部产生最高加速度。根据缩放后的婴儿损伤耐受曲线绘制,模拟产生的头部加速度与文献中报道的模拟物理模型摇晃过程中产生的加速度相当。该模型为利用头部生物逼真度的改进提供了一个计算平台,以研究更广泛的伤害场景。