Institut für Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Rostock, Albert-Einstein-Str. 3, D-18059 Rostock, Germany.
Life (Basel). 2014 Dec 29;5(1):25-49. doi: 10.3390/life5010025.
The long evolutionary history and photo-autotrophic lifestyle of cyanobacteria has allowed them to colonize almost all photic habitats on Earth, including environments with high or fluctuating salinity. Their basal salt acclimation strategy includes two principal reactions, the active export of ions and the accumulation of compatible solutes. Cyanobacterial salt acclimation has been characterized in much detail using selected model cyanobacteria, but their salt sensing and regulatory mechanisms are less well understood. Here, we briefly review recent advances in the identification of salt acclimation processes and the essential genes/proteins involved in acclimation to high salt. This knowledge is of increasing importance because the necessary mass cultivation of cyanobacteria for future use in biotechnology will be performed in sea water. In addition, cyanobacterial salt resistance genes also can be applied to improve the salt tolerance of salt sensitive organisms, such as crop plants.
蓝细菌具有漫长的进化历史和光自养生活方式,这使它们能够在地球上几乎所有有光的栖息地中定殖,包括高盐或盐度波动的环境。它们的基础盐适应策略包括两个主要反应,即离子的主动外排和相容性溶质的积累。使用选定的模式蓝细菌对蓝细菌的盐适应进行了详细的描述,但对其盐感应和调节机制的了解较少。在这里,我们简要回顾了盐适应过程的鉴定以及适应高盐所涉及的重要基因/蛋白质的最新进展。由于未来在生物技术中使用的蓝细菌的大规模培养将在海水中进行,因此这些知识变得越来越重要。此外,蓝细菌的耐盐基因也可用于提高对盐敏感生物(如作物植物)的耐盐性。