Caserta Giorgio, Roy Souvik, Atta Mohamed, Artero Vincent, Fontecave Marc
Laboratoire de Chimie des Processus Biologiques, Collège de France, CNRS, Université P. et M. Curie, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
Laboratoire de Chimie et Biologie des Métaux, Université Grenoble Alpes, CEA Life Science Division, CNRS, 17 rue des Martyrs, F-38054 Grenoble Cedex 9, France.
Curr Opin Chem Biol. 2015 Apr;25:36-47. doi: 10.1016/j.cbpa.2014.12.018. Epub 2014 Dec 29.
There is an urgent need for cheap, abundant and efficient catalysts as an alternative to platinum for hydrogen production and oxidation in (photo)electrolyzers and fuel cells. Hydrogenases are attractive solutions. These enzymes use exclusively nickel and iron in their active sites and function with high catalytic rates at the thermodynamic equilibrium. As an alternative, a number of biomimetic and bioinspired catalysts for H2 production and/or uptake, based on Ni, Fe and Co, have been developed and shown to display encouraging performances. In this review we discuss specifically recent approaches aiming at incorporating these compounds within oligomeric and polymeric hosts. The latter are most often biological compounds (peptides, proteins, polysaccharides, etc.) but we also discuss non-biological scaffolds (synthetic polymers, Metal-organic-Frameworks, etc.) which can provide the appropriate environment to tune the activity and stability of the synthetic catalysts. These supramolecular catalytic systems thus define a class of original compounds so-called artificial hydrogenases.
迫切需要廉价、丰富且高效的催化剂,以替代铂用于(光)电解槽和燃料电池中的氢气生产与氧化。氢化酶是颇具吸引力的解决方案。这些酶在其活性位点仅使用镍和铁,并在热力学平衡下以高催化速率发挥作用。作为替代方案,已经开发出了许多基于镍、铁和钴的用于氢气生产和/或吸收的仿生和受生物启发的催化剂,并显示出令人鼓舞的性能。在本综述中,我们将具体讨论旨在将这些化合物纳入寡聚体和聚合物主体中的最新方法。后者通常是生物化合物(肽、蛋白质、多糖等),但我们也会讨论非生物支架(合成聚合物、金属有机框架等),它们可以提供适当的环境来调节合成催化剂的活性和稳定性。这些超分子催化体系因此定义了一类被称为人工氢化酶的新型化合物。