She Yiting, Engelbrecht Vera, Kozuch Jacek, Apfel Ulf-Peter, Stripp Sven T, Hemschemeier Anja, Happe Thomas
Photobiotechnology group, Faculty of Biology and Biotechnology, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
Department of Physics, Experimental Molecular Biophysics, Free University of Berlin, Arnimallee 14, 14195, Berlin, Germany.
Adv Sci (Weinh). 2025 Sep;12(33):e01897. doi: 10.1002/advs.202501897. Epub 2025 Jun 17.
Current attempts to transform our fossil fuel-based society into a sustainable one involve learning from and employing the biochemistry of nature. The process of photosynthesis is exemplary for utilizing sunlight as a regenerative energy source. Enzymes like hydrogenases, which reduce protons to molecular hydrogen (H) under ambient conditions, are model biocatalysts for generating sustainable, clean fuels. In green algae, photosynthesis and hydrogenases are coupled through ferredoxin, a small electron transfer protein. Here, it is shown that several plant-type ferredoxins can interact with a chemically synthesized active site cofactor analog of [FeFe]-hydrogenases in a way that allows comparably high H evolution rates. UV-vis and Fourier-transform infrared spectroscopy indicate that the natural [2Fe-2S] clusters of the ferredoxin hosts must be absent for a functional interaction of polypeptide and cofactor mimic and that the apo-ferredoxins shield the H-producing cofactor from the solvent. The hybrid proteins exhibited higher O tolerance than natural [FeFe]-hydrogenases and generated H in light-dependent cascades based on photosystem I or the chemical photosensitizer proflavine. These features and the combination of natural hosts and cofactors might contribute to establishing sustainable light-dependent H production systems.
当前,将我们基于化石燃料的社会转变为可持续社会的尝试包括借鉴和应用自然界的生物化学过程。光合作用过程就是利用阳光作为可再生能源的典范。诸如氢化酶之类的酶,能在环境条件下将质子还原为分子氢(H₂),是生成可持续清洁燃料的典型生物催化剂。在绿藻中,光合作用和氢化酶通过铁氧化还原蛋白(一种小型电子传递蛋白)相互关联。在此研究中发现,几种植物型铁氧化还原蛋白能够以一种实现相当高的氢气释放速率的方式,与化学合成的[FeFe]-氢化酶活性位点辅因子类似物相互作用。紫外可见光谱和傅里叶变换红外光谱表明,为了使多肽与辅因子模拟物发生功能性相互作用,铁氧化还原蛋白宿主的天然[2Fe-2S]簇必须缺失,并且脱辅基铁氧化还原蛋白可使产氢辅因子免受溶剂影响。这些杂合蛋白比天然[FeFe]-氢化酶表现出更高的氧耐受性,并基于光系统I或化学光敏剂原黄素在光依赖级联反应中产生氢气。这些特性以及天然宿主与辅因子的结合可能有助于建立可持续的光依赖产氢系统。