Padding J T, Briels W J
Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
Computational Biophysics, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
J Chem Phys. 2014 Dec 28;141(24):244108. doi: 10.1063/1.4904315.
We present a Galilean invariant, momentum conserving first order Brownian dynamics scheme for coarse-grained simulations of highly frictional soft matter systems. Friction forces are taken to be with respect to moving background material. The motion of the background material is described by locally averaged velocities in the neighborhood of the dissolved coarse coordinates. The velocity variables are updated by a momentum conserving scheme. The properties of the stochastic updates are derived through the Chapman-Kolmogorov and Fokker-Planck equations for the evolution of the probability distribution of coarse-grained position and velocity variables, by requiring the equilibrium distribution to be a stationary solution. We test our new scheme on concentrated star polymer solutions and find that the transverse current and velocity time auto-correlation functions behave as expected from hydrodynamics. In particular, the velocity auto-correlation functions display a long time tail in complete agreement with hydrodynamics.
我们提出了一种伽利略不变性、动量守恒的一阶布朗动力学方案,用于对高摩擦软物质系统进行粗粒化模拟。摩擦力被视为相对于移动背景物质的力。背景物质的运动由溶解的粗坐标邻域内的局部平均速度来描述。速度变量通过动量守恒方案进行更新。通过粗粒化位置和速度变量概率分布演化的查普曼 - 柯尔莫哥洛夫方程和福克 - 普朗克方程,在要求平衡分布为平稳解的情况下,推导出随机更新的性质。我们在浓星型聚合物溶液上测试了我们的新方案,发现横向电流和速度时间自相关函数的行为符合流体动力学的预期。特别是,速度自相关函数显示出长时间的拖尾,与流体动力学完全一致。