Suppr超能文献

特邀文章:利用扫描隧道显微镜实现原子级完美纳米结构的自主组装

Invited Article: Autonomous assembly of atomically perfect nanostructures using a scanning tunneling microscope.

作者信息

Celotta Robert J, Balakirsky Stephen B, Fein Aaron P, Hess Frank M, Rutter Gregory M, Stroscio Joseph A

机构信息

Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA.

出版信息

Rev Sci Instrum. 2014 Dec;85(12):121301. doi: 10.1063/1.4902536.

Abstract

A major goal of nanotechnology is to develop the capability to arrange matter at will by placing individual atoms at desired locations in a predetermined configuration to build a nanostructure with specific properties or function. The scanning tunneling microscope has demonstrated the ability to arrange the basic building blocks of matter, single atoms, in two-dimensional configurations. An array of various nanostructures has been assembled, which display the quantum mechanics of quantum confined geometries. The level of human interaction needed to physically locate the atom and bring it to the desired location limits this atom assembly technology. Here we report the use of autonomous atom assembly via path planning technology; this allows atomically perfect nanostructures to be assembled without the need for human intervention, resulting in precise constructions in shorter times. We demonstrate autonomous assembly by assembling various quantum confinement geometries using atoms and molecules and describe the benefits of this approach.

摘要

纳米技术的一个主要目标是通过将单个原子放置在预定构型中的所需位置,以随意排列物质,从而构建具有特定性质或功能的纳米结构。扫描隧道显微镜已证明能够将物质的基本构建单元,即单个原子,排列成二维构型。已经组装了一系列各种纳米结构,这些结构展示了量子受限几何形状的量子力学特性。通过物理定位原子并将其带到所需位置所需的人为交互程度限制了这种原子组装技术。在此,我们报告了通过路径规划技术进行自主原子组装的应用;这使得能够在无需人为干预的情况下组装出原子级完美的纳米结构,从而在更短时间内实现精确构建。我们通过使用原子和分子组装各种量子受限几何形状来展示自主组装,并描述这种方法的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验