Chemistry Department, Tufts University, 62 Talbot Avenue, Medford, Massachusetts 02155, United States.
ACS Nano. 2012 Nov 27;6(11):10115-21. doi: 10.1021/nn3038463. Epub 2012 Oct 9.
Atomic and molecular self-assembly are key phenomena that underpin many important technologies. Typically, thermally enabled diffusion allows a system to sample many areas of configurational space, and ordered assemblies evolve that optimize interactions between species. Herein we describe a system in which the diffusion is quantum tunneling in nature and report the self-assembly of H atoms on a Cu(111) surface into complex arrays based on local clustering followed by larger scale islanding of these clusters. By scanning tunneling microscope tip-induced scrambling of H atom assemblies, we are able to watch the atomic scale details of H atom self-assembly in real time. The ordered arrangements we observe are complex and very different from those formed by H on other metals that occur in much simpler geometries. We contrast the diffusion and assembly of H with D, which has a much slower tunneling rate and is not able to form the large islands observed with H over equivalent time scales. Using density functional theory, we examine the interaction of H atoms on Cu(111) by calculating the differential binding energy as a function of H coverage. At the temperature of the experiments (5 K), H(D) diffusion by quantum tunneling dominates. The quantum-tunneling-enabled H and D diffusion is studied using a semiclassically corrected transition state theory coupled with density functional theory. This system constitutes the first example of quantum-tunneling-enabled self-assembly, while simultaneously demonstrating the complex ordering of H on Cu(111), a catalytically relevant surface.
原子和分子的自组装是许多重要技术的基础关键现象。通常,热激活扩散允许系统对构象空间的许多区域进行采样,并演化出优化物种间相互作用的有序组装体。本文描述了一种扩散本质上是量子隧穿的系统,并报告了 H 原子在 Cu(111)表面上自组装成复杂的局部聚类阵列,然后这些聚类进一步形成更大规模的岛屿。通过扫描隧道显微镜针尖诱导的 H 原子组装体的混乱,我们能够实时观察 H 原子自组装的原子尺度细节。我们观察到的有序排列非常复杂,与 H 在其他金属上形成的那些在更简单的几何形状中发生的排列有很大的不同。我们将 H 和 D 的扩散和组装进行了对比,D 的隧穿速率要慢得多,并且在同等时间尺度上无法形成与 H 观察到的大岛屿。我们使用密度泛函理论通过计算 H 覆盖率作为函数的差分结合能来研究 H 原子在 Cu(111)上的相互作用。在实验温度(5 K)下,H(D)通过量子隧穿扩散占主导地位。我们使用半经典修正的过渡态理论与密度泛函理论相结合来研究量子隧穿增强的 H 和 D 扩散。该系统构成了量子隧穿增强自组装的第一个例子,同时也展示了 H 在催化相关表面 Cu(111)上的复杂有序性。