Ahemaiti Aikeremu, Wigström Holger, Ainla Alar, Jeffries Gavin D M, Orwar Owe, Jesorka Aldo, Jardemark Kent
Department of Chemical and Biological Engineering, Chalmers University of Technology, Kemivägen 10, SE-41296 Göteborg, Sweden.
Institute of Neuroscience and Physiology, The Sahlgrenska Academy at Göteborg University, Box 430, SE-40530 Göteborg, Sweden.
J Neurosci Methods. 2015 Feb 15;241:132-6. doi: 10.1016/j.jneumeth.2014.12.017. Epub 2014 Dec 30.
Among the various fluidic control technologies, microfluidic devices are becoming powerful tools for pharmacological studies using brain slices, since these devices overcome traditional limitations of conventional submerged slice chambers, leading to better spatiotemporal control over delivery of drugs to specific regions in the slices. However, microfluidic devices are not yet fully optimized for such studies.
We have recently developed a multifunctional pipette (MFP), a free standing hydrodynamically confined microfluidic device, which provides improved spatiotemporal control over drug delivery to biological tissues.
We demonstrate herein the ability of the MFP to selectively perfuse one dendritic layer in the CA1 region of hippocampus with CNQX, an AMPA receptor antagonist, while not affecting the other layers in this region. Our experiments also illustrate the essential role of hydrodynamic confinement in sharpening the spatial selectivity in brain slice experiments. Concentration-response measurements revealed that the ability of the MFP to control local drug concentration is comparable with that of whole slice perfusion, while in comparison the required amounts of active compounds can be reduced by several orders of magnitude.
The multifunctional pipette is applied with an angle, which, compared to other hydrodynamically confined microfluidic devices, provides more accessible space for other probing and imaging techniques.
Using the MFP it will be possible to study selected regions of brain slices, integrated with various imaging and probing techniques, without affecting the other parts of the slices.
在各种流体控制技术中,微流控装置正成为利用脑片进行药理学研究的强大工具,因为这些装置克服了传统浸没式脑片腔室的局限性,从而能更好地在时空上控制向脑片中特定区域输送药物。然而,微流控装置在这类研究中尚未得到充分优化。
我们最近开发了一种多功能移液器(MFP),这是一种独立的流体动力学受限微流控装置,它能在向生物组织输送药物时提供更好的时空控制。
我们在此展示了多功能移液器用AMPA受体拮抗剂CNQX选择性灌注海马体CA1区一个树突层的能力,同时不影响该区域的其他层。我们的实验还说明了流体动力学受限在增强脑片实验空间选择性方面的重要作用。浓度 - 反应测量表明,多功能移液器控制局部药物浓度的能力与全脑片灌注相当,而相比之下,所需活性化合物的量可减少几个数量级。
多功能移液器以一定角度应用,与其他流体动力学受限微流控装置相比,为其他探测和成像技术提供了更便利的空间。
使用多功能移液器将有可能研究脑片的选定区域,并与各种成像和探测技术相结合,而不影响脑片的其他部分。