Suppr超能文献

使用虚拟约束对踝关节假肢模型进行同步控制

SIMULTANEOUS CONTROL OF AN ANKLE-FOOT PROSTHESIS MODEL USING A VIRTUAL CONSTRAINT.

作者信息

Nanjangud Akshay, Gregg Robert D

机构信息

Locomotor Control Systems Laboratory, Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080,

Locomotor Control Systems Laboratory, Departments of Bioengineering and Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080,

出版信息

Proc ASME Dyn Syst Control Conf. 2014 Oct;2014. doi: 10.1115/DSCC2014-5963.

Abstract

Amputee locomotion can benefit from recent advances in robotic prostheses, but their control systems design poses challenges. Prosthesis control typically discretizes the nonlinear gait cycle into phases, with each phase controlled by different linear controllers. Unfortunately, real-time identification of gait phases and tuning of controller parameters limit implementation. Recently, biped robots have used phase variables and virtual constraints to characterize the gait cycle as a whole. Although phase variables and virtual constraints could solve issues with discretizing the gait cycle, the virtual constraints method from robotics does not readily translate to prosthetics because of hard-to-measure quantities, like the interaction forces between the user and prosthesis socket, and prosthesis parameters which are often altered by a clinician even for a known patient. We use the simultaneous stabilization approach to design a low-order, linear time-invariant controller for ankle prostheses independent of such quantities to enforce a virtual constraint. We show in simulation that this controller produces suitable walking gaits for a simplified amputee model.

摘要

截肢者的行走可以受益于机器人假肢的最新进展,但其控制系统设计带来了挑战。假肢控制通常将非线性步态周期离散为各个阶段,每个阶段由不同的线性控制器控制。不幸的是,步态阶段的实时识别和控制器参数的调整限制了其应用。最近,双足机器人使用相位变量和虚拟约束来整体表征步态周期。虽然相位变量和虚拟约束可以解决步态周期离散化的问题,但由于难以测量的量,如使用者与假肢接受腔之间的相互作用力,以及即使对于已知患者临床医生也经常改变的假肢参数,机器人技术中的虚拟约束方法不易转化为假肢应用。我们使用同时镇定方法来设计一个低阶、线性时不变的脚踝假肢控制器,该控制器独立于这些量以强制执行虚拟约束。我们在仿真中表明,该控制器为简化的截肢者模型产生合适的行走步态。

相似文献

1
SIMULTANEOUS CONTROL OF AN ANKLE-FOOT PROSTHESIS MODEL USING A VIRTUAL CONSTRAINT.
Proc ASME Dyn Syst Control Conf. 2014 Oct;2014. doi: 10.1115/DSCC2014-5963.
2
Intuitive Clinician Control Interface for a Powered Knee-Ankle Prosthesis: A Case Study.
IEEE J Transl Eng Health Med. 2018 Nov 23;6:2600209. doi: 10.1109/JTEHM.2018.2880199. eCollection 2018.
3
Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
Neural Netw. 2008 May;21(4):654-66. doi: 10.1016/j.neunet.2008.03.006. Epub 2008 Apr 26.
4
Toward Unified Control of a Powered Prosthetic Leg: A Simulation Study.
IEEE Trans Control Syst Technol. 2018 Jan;26(1):305-312. doi: 10.1109/TCST.2016.2643566. Epub 2017 Jan 16.
5
Unifying the Gait Cycle in the Control of a Powered Prosthetic Leg.
IEEE Int Conf Rehabil Robot. 2015 Aug;2015:289-294. doi: 10.1109/ICORR.2015.7281214.
7
Nonholonomic Virtual Constraints for Control of Powered Prostheses Across Walking Speeds.
IEEE Trans Control Syst Technol. 2022 Sep;30(5):2062-2071. doi: 10.1109/tcst.2021.3133823. Epub 2021 Dec 21.
8
Preliminary Virtual Constraint-Based Control Evaluation on a Pediatric Lower-Limb Exoskeleton.
Bioengineering (Basel). 2024 Jun 8;11(6):590. doi: 10.3390/bioengineering11060590.
9
Automatic Tuning of Virtual Constraint-Based Control Algorithms for Powered Knee-Ankle Prostheses.
Control Technol Appl. 2017 Aug;2017:812-818. doi: 10.1109/CCTA.2017.8062560.
10
Stable, Robust Hybrid Zero Dynamics Control of Powered Lower-Limb Prostheses.
IEEE Trans Automat Contr. 2017 Aug;62(8):3930-3942. doi: 10.1109/TAC.2017.2648040. Epub 2017 Jan 5.

引用本文的文献

1
fNIRS-based Neurorobotic Interface for gait rehabilitation.
J Neuroeng Rehabil. 2018 Feb 5;15(1):7. doi: 10.1186/s12984-018-0346-2.
2
Prosthetic Leg Control in the Nullspace of Human Interaction.
Proc Am Control Conf. 2016 Jul;2016:4814-4821. doi: 10.1109/ACC.2016.7526115. Epub 2016 Aug 1.

本文引用的文献

2
Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg.
IEEE Trans Control Syst Technol. 2014 Jan;22(1):246-254. doi: 10.1109/TCST.2012.2236840.
3
Experimental effective shape control of a powered transfemoral prosthesis.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650413. doi: 10.1109/ICORR.2013.6650413.
4
Strategies to reduce the configuration time for a powered knee and ankle prosthesis across multiple ambulation modes.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650371. doi: 10.1109/ICORR.2013.6650371.
5
A portable powered ankle-foot orthosis for rehabilitation.
J Rehabil Res Dev. 2011;48(4):459-72. doi: 10.1682/jrrd.2010.04.0054.
6
Upslope walking with a powered knee and ankle prosthesis: initial results with an amputee subject.
IEEE Trans Neural Syst Rehabil Eng. 2011 Feb;19(1):71-8. doi: 10.1109/TNSRE.2010.2087360. Epub 2010 Oct 14.
8
Effective rocker shapes used by able-bodied persons for walking and fore-aft swaying: implications for design of ankle-foot prostheses.
Gait Posture. 2010 Jun;32(2):181-4. doi: 10.1016/j.gaitpost.2010.04.014. Epub 2010 May 14.
9
Control of a powered ankle-foot prosthesis based on a neuromuscular model.
IEEE Trans Neural Syst Rehabil Eng. 2010 Apr;18(2):164-73. doi: 10.1109/TNSRE.2009.2039620. Epub 2010 Jan 12.
10
Design and Control of a Powered Transfemoral Prosthesis.
Int J Rob Res. 2008 Feb 1;27(2):263-273. doi: 10.1177/0278364907084588.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验