Suppr超能文献

人体交互零空间中的假肢控制

Prosthetic Leg Control in the Nullspace of Human Interaction.

作者信息

Gregg Robert D, Martin Anne E

机构信息

Departments of Bioengineering and Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA.

Department of Mechanical and Nuclear Engineering, Pennsylvania State University, State College, PA 16801, USA.

出版信息

Proc Am Control Conf. 2016 Jul;2016:4814-4821. doi: 10.1109/ACC.2016.7526115. Epub 2016 Aug 1.

Abstract

Recent work has extended the control method of virtual constraints, originally developed for autonomous walking robots, to powered prosthetic legs for lower-limb amputees. Virtual constraints define desired joint patterns as functions of a mechanical phasing variable, which are typically enforced by torque control laws that linearize the output dynamics associated with the virtual constraints. However, the output dynamics of a powered prosthetic leg generally depend on the human interaction forces, which must be measured and canceled by the feedback linearizing control law. This feedback requires expensive multi-axis load cells, and actively canceling the interaction forces may minimize the human's influence over the prosthesis. To address these limitations, this paper proposes a method for projecting virtual constraints into the nullspace of the human interaction terms in the output dynamics. The projected virtual constraints naturally render the output dynamics invariant with respect to the human interaction forces, which instead enter into the internal dynamics of the partially linearized prosthetic system. This method is illustrated with simulations of a transfemoral amputee model walking with a powered knee-ankle prosthesis that is controlled via virtual constraints with and without the proposed projection.

摘要

最近的研究工作已将最初为自主行走机器人开发的虚拟约束控制方法扩展到用于下肢截肢者的动力假肢腿部。虚拟约束将期望的关节模式定义为机械相位变量的函数,这些函数通常由扭矩控制定律强制执行,该定律使与虚拟约束相关的输出动力学线性化。然而,动力假肢腿部的输出动力学通常取决于人体相互作用力,而这些力必须通过反馈线性化控制定律进行测量和抵消。这种反馈需要昂贵的多轴测力传感器,并且主动抵消相互作用力可能会使人体对假肢的影响最小化。为了解决这些限制,本文提出了一种将虚拟约束投影到输出动力学中人体相互作用项的零空间的方法。投影后的虚拟约束自然地使输出动力学相对于人体相互作用力保持不变,而人体相互作用力则进入部分线性化假肢系统的内部动力学。通过对一名经股骨截肢者模型使用动力膝-踝假肢行走的模拟来说明该方法,该假肢通过有无所提出的投影的虚拟约束进行控制。

相似文献

1
Prosthetic Leg Control in the Nullspace of Human Interaction.
Proc Am Control Conf. 2016 Jul;2016:4814-4821. doi: 10.1109/ACC.2016.7526115. Epub 2016 Aug 1.
3
Toward Unified Control of a Powered Prosthetic Leg: A Simulation Study.
IEEE Trans Control Syst Technol. 2018 Jan;26(1):305-312. doi: 10.1109/TCST.2016.2643566. Epub 2017 Jan 16.
5
Continuous-Phase Control of a Powered Knee-Ankle Prosthesis: Amputee Experiments Across Speeds and Inclines.
IEEE Trans Robot. 2018 Jun;34(3):686-701. doi: 10.1109/TRO.2018.2794536. Epub 2018 Feb 27.
6
Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg.
IEEE Trans Control Syst Technol. 2014 Jan;22(1):246-254. doi: 10.1109/TCST.2012.2236840.
7
Transfemoral amputee intact limb loading and compensatory gait mechanics during down slope ambulation and the effect of prosthetic knee mechanisms.
Clin Biomech (Bristol). 2018 Jun;55:65-72. doi: 10.1016/j.clinbiomech.2018.04.007. Epub 2018 Apr 12.
8
Unifying the Gait Cycle in the Control of a Powered Prosthetic Leg.
IEEE Int Conf Rehabil Robot. 2015 Aug;2015:289-294. doi: 10.1109/ICORR.2015.7281214.
10
Experimental effective shape control of a powered transfemoral prosthesis.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650413. doi: 10.1109/ICORR.2013.6650413.

引用本文的文献

1
Hybrid Nonlinear Disturbance Observer Design for Underactuated Bipedal Robots.
Proc IEEE Conf Decis Control. 2018 Dec;2018:1217-1224. doi: 10.1109/CDC.2018.8618650. Epub 2019 Jan 21.
2
Automatic Tuning of Virtual Constraint-Based Control Algorithms for Powered Knee-Ankle Prostheses.
Control Technol Appl. 2017 Aug;2017:812-818. doi: 10.1109/CCTA.2017.8062560.

本文引用的文献

1
Decentralized Feedback Controllers for Exponential Stabilization of Hybrid Periodic Orbits: Application to Robotic Walking.
Proc Am Control Conf. 2016 Jul;2016:4793-4800. doi: 10.1109/ACC.2016.7526112. Epub 2016 Aug 1.
2
Orthotic Body-Weight Support Through Underactuated Potential Energy Shaping with Contact Constraints.
Proc IEEE Conf Decis Control. 2015 Dec;2015:1483-1490. doi: 10.1109/cdc.2015.7402420.
3
Hybrid Invariance and Stability of a Feedback Linearizing Controller for Powered Prostheses.
Proc Am Control Conf. 2015 Jul 1;2015:4670-4676. doi: 10.1109/ACC.2015.7172065.
4
A survey of phase variable candidates of human locomotion.
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4017-21. doi: 10.1109/EMBC.2014.6944505.
6
Control strategies for active lower extremity prosthetics and orthotics: a review.
J Neuroeng Rehabil. 2015 Jan 5;12(1):1. doi: 10.1186/1743-0003-12-1.
7
SIMULTANEOUS CONTROL OF AN ANKLE-FOOT PROSTHESIS MODEL USING A VIRTUAL CONSTRAINT.
Proc ASME Dyn Syst Control Conf. 2014 Oct;2014. doi: 10.1115/DSCC2014-5963.
8
Controlled Reduction with Unactuated Cyclic Variables: Application to 3D Bipedal Walking with Passive Yaw Rotation.
IEEE Trans Automat Contr. 2013 Oct;58(10):2679-2685. doi: 10.1109/TAC.2013.2256011.
9
Predicting human walking gaits with a simple planar model.
J Biomech. 2014 Apr 11;47(6):1416-21. doi: 10.1016/j.jbiomech.2014.01.035. Epub 2014 Feb 7.
10
Experimental effective shape control of a powered transfemoral prosthesis.
IEEE Int Conf Rehabil Robot. 2013 Jun;2013:6650413. doi: 10.1109/ICORR.2013.6650413.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验