Suppr超能文献

脊髓损伤后深部背角中间神经元的功能变化会随着不同时长的运动训练而增强。

Functional changes in deep dorsal horn interneurons following spinal cord injury are enhanced with different durations of exercise training.

作者信息

Rank M M, Flynn J R, Battistuzzo C R, Galea M P, Callister R, Callister R J

机构信息

School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan 2308, NSW, Australia.

出版信息

J Physiol. 2015 Jan 1;593(1):331-45. doi: 10.1113/jphysiol.2014.282640. Epub 2014 Nov 12.

Abstract

Exercise training after spinal cord injury (SCI) enhances collateral sprouting from axons near the injury and is thought to promote intraspinal circuit reorganisation that effectively bridges the SCI. The effects of exercise training, and its duration, on interneurons in these de novo intraspinal circuits are poorly understood. In an adult mouse hemisection model of SCI, we used whole-cell patch-clamp electrophysiology to examine changes in the intrinsic and synaptic properties of deep dorsal horn interneurons in the vicinity of a SCI in response to the injury, and after 3 and 6 weeks of treadmill exercise training. SCI alone exerted powerful effects on the intrinsic and synaptic properties of interneurons near the lesion. Importantly, synaptic activity, both local and descending, was preferentially enhanced by exercise training, suggesting that exercise promotes synaptic plasticity in spinal cord interneurons that are ideally placed to form new intraspinal circuits after SCI. Following incomplete spinal cord injury (SCI), collaterals sprout from intact and injured axons in the vicinity of the lesion. These sprouts are thought to form new synaptic contacts that effectively bypass the lesion epicentre and contribute to improved functional recovery. Such anatomical changes are known to be enhanced by exercise training; however, the mechanisms underlying exercise-mediated plasticity are poorly understood. Specifically, we do not know how SCI alone or SCI combined with exercise alters the intrinsic and synaptic properties of interneurons in the vicinity of a SCI. Here we use a hemisection model of incomplete SCI in adult mice and whole-cell patch-clamp recording in a horizontal spinal cord slice preparation to examine the functional properties of deep dorsal horn (DDH) interneurons located in the vicinity of a SCI following 3 or 6 weeks of treadmill exercise training. We examined the functional properties of local and descending excitatory synaptic connections by recording spontaneous excitatory postsynaptic currents (sEPSCs) and responses to dorsal column stimulation, respectively. We find that SCI in untrained animals exerts powerful effects on intrinsic, and especially, synaptic properties of DDH interneurons. Plasticity in intrinsic properties was most prominent at 3 weeks post SCI, whereas synaptic plasticity was greatest at 6 weeks post injury. Exercise training did not markedly affect intrinsic membrane properties; however, local and descending excitatory synaptic drive were enhanced by 3 and 6 weeks of training. These results suggest exercise promotes synaptic plasticity in spinal cord interneurons that are ideally placed to form new intraspinal circuits after SCI.

摘要

脊髓损伤(SCI)后的运动训练可增强损伤部位附近轴突的侧支发芽,并被认为能促进脊髓内回路重组,从而有效跨越脊髓损伤部位。运动训练及其持续时间对这些新生脊髓回路中中间神经元的影响目前了解甚少。在成年小鼠SCI半切模型中,我们使用全细胞膜片钳电生理学方法,研究脊髓损伤附近深背角中间神经元的内在特性和突触特性在损伤后以及进行3周和6周跑步机运动训练后的变化。单独的脊髓损伤对损伤附近中间神经元的内在特性和突触特性产生了强大影响。重要的是,运动训练优先增强了局部和下行的突触活动,这表明运动促进了脊髓中间神经元的突触可塑性,这些中间神经元在脊髓损伤后形成新的脊髓内回路方面具有理想的位置。不完全脊髓损伤(SCI)后,损伤部位附近完整和受损的轴突会发出侧支。这些侧支被认为会形成新的突触连接,从而有效地绕过损伤中心并有助于改善功能恢复。已知运动训练可增强这种解剖学变化;然而,运动介导的可塑性的潜在机制尚不清楚。具体而言,我们不知道单独的脊髓损伤或脊髓损伤与运动相结合如何改变脊髓损伤附近中间神经元的内在特性和突触特性。在这里,我们使用成年小鼠不完全SCI的半切模型,并在水平脊髓切片制备中进行全细胞膜片钳记录,以研究在进行3周或6周跑步机运动训练后,位于脊髓损伤附近的深背角(DDH)中间神经元的功能特性。我们分别通过记录自发兴奋性突触后电流(sEPSCs)和对背柱刺激的反应,研究了局部和下行兴奋性突触连接的功能特性。我们发现,未训练动物的脊髓损伤对DDH中间神经元的内在特性,尤其是突触特性产生了强大影响。内在特性可塑性在脊髓损伤后3周最为突出,而突触可塑性在损伤后6周最大。运动训练并未显著影响内在膜特性;然而,3周和6周的训练增强了局部和下行兴奋性突触驱动。这些结果表明,运动促进了脊髓中间神经元的突触可塑性,这些中间神经元在脊髓损伤后形成新的脊髓内回路方面具有理想的位置。

相似文献

引用本文的文献

4
Neuroplasticity and regeneration after spinal cord injury.脊髓损伤后的神经可塑性与再生
N Am Spine Soc J. 2023 Jun 8;15:100235. doi: 10.1016/j.xnsj.2023.100235. eCollection 2023 Sep.
5
Respiratory Training and Plasticity After Cervical Spinal Cord Injury.颈脊髓损伤后的呼吸训练与可塑性
Front Cell Neurosci. 2021 Sep 21;15:700821. doi: 10.3389/fncel.2021.700821. eCollection 2021.

本文引用的文献

6
Spinal cord injury and physical activity: preservation of the body.脊髓损伤与身体活动:保持身体机能
Spinal Cord. 2012 May;50(5):344-51. doi: 10.1038/sc.2011.149. Epub 2011 Dec 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验