Suppr超能文献

一种用于局部晚期头颈肿瘤光传播近实时模拟的新有限元方法。

A new finite element approach for near real-time simulation of light propagation in locally advanced head and neck tumors.

作者信息

Oakley Emily, Wrazen Brian, Bellnier David A, Syed Yusef, Arshad Hassan, Shafirstein Gal

机构信息

Photodynamic Therapy Center, Roswell Park Cancer Institute, Buffalo, New York.

出版信息

Lasers Surg Med. 2015 Jan;47(1):60-7. doi: 10.1002/lsm.22313. Epub 2015 Jan 5.

Abstract

BACKGROUND AND OBJECTIVES

Several clinical studies suggest that interstitial photodynamic therapy (I-PDT) may benefit patients with locally advanced head and neck cancer (LAHNC). For I-PDT, the therapeutic light is delivered through optical fibers inserted into the target tumor. The complex anatomy of the head and neck requires careful planning of fiber insertions. Often the fibers' location and tumor optical properties may vary from the original plan therefore pretreatment planning needs near real-time updating to account for any changes. The purpose of this work was to develop a finite element analysis (FEA) approach for near real-time simulation of light propagation in LAHNC.

METHODS

Our previously developed FEA for modeling light propagation in skin tissue was modified to simulate light propagation from interstitial optical fibers. The modified model was validated by comparing the calculations with measurements in a phantom mimicking tumor optical properties. We investigated the impact of mesh element size and growth rate on the computation time, and defined optimal settings for the FEA. We demonstrated how the optimized FEA can be used for simulating light propagation in two cases of LAHNC amenable to I-PDT, as proof-of-concept.

RESULTS

The modified FEA was in agreement with the measurements (P = 0.0271). The optimal maximum mesh size and growth rate were 0.005-0.02 m and 2-2.5 m/m, respectively. Using these settings the computation time for simulating light propagation in LAHNC was reduced from 25.9 to 3.7 minutes in one case, and 10.1 to 4 minutes in another case. There were minor differences (1.62%, 1.13%) between the radiant exposures calculated with either mesh in both cases.

CONCLUSIONS

Our FEA approach can be used to model light propagation from diffused optical fibers in complex heterogeneous geometries representing LAHNC. There is a range of maximum element size (MES) and maximum element growth rate (MEGR) that can be used to minimize the computation time of the FEA to 4 minutes.

摘要

背景与目的

多项临床研究表明,间质光动力疗法(I-PDT)可能使局部晚期头颈癌(LAHNC)患者受益。对于I-PDT,治疗光通过插入靶肿瘤的光纤传输。头颈部位复杂的解剖结构要求对光纤插入进行仔细规划。光纤的位置和肿瘤的光学特性常常会与原计划不同,因此预处理规划需要近乎实时地更新,以考虑任何变化。本研究的目的是开发一种有限元分析(FEA)方法,用于对LAHNC中的光传播进行近乎实时模拟。

方法

对我们之前开发的用于模拟皮肤组织中光传播的FEA进行修改,以模拟来自间质光纤的光传播。通过将计算结果与模拟肿瘤光学特性的体模测量值进行比较,对修改后的模型进行验证。我们研究了网格单元大小和增长率对计算时间的影响,并确定了FEA的最佳设置。作为概念验证,我们展示了优化后的FEA可如何用于模拟两种适合I-PDT的LAHNC病例中的光传播。

结果

修改后的FEA与测量结果一致(P = 0.0271)。最佳最大网格大小和增长率分别为0.005 - 0.02 m和2 - 2.5 m/m。使用这些设置,在一种情况下,模拟LAHNC中光传播的计算时间从25.9分钟减少到3.7分钟,在另一种情况下从10.1分钟减少到4分钟。在两种情况下,使用任一网格计算的辐射暴露之间存在微小差异(1.62%,1.13%)。

结论

我们的FEA方法可用于模拟在代表LAHNC的复杂异质几何结构中来自扩散光纤的光传播。存在一系列最大单元大小(MES)和最大单元增长率(MEGR),可用于将FEA的计算时间最小化至4分钟。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d7b/5396141/78fb7bfc51bd/LSM-47-60-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验