Chang Shao, Zhou Xin, Gao Anji, Luo Yixiang, Shan Yujia, Zhang Lin, Gui Zhengwei, Huang Xingchen, Hu Xiaoyuan, Huo Tianci, Liu Linhui, Zhong Hongying
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, College of Life Science and Technology, Medical College of Guangxi University, Center for Instrumental Analysis, Guangxi University Nanning Guangxi 530004 P. R. China
Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Science Wuhan 430071 P. R. China.
Chem Sci. 2025 Jun 2. doi: 10.1039/d5sc02632f.
Protonation/deprotonation is the major ionization mechanism of organic molecules in current electrospray ionization (ESI) and matrix assisted laser desorption ionization mass spectrometric (MALDI MS) imaging. But cellular complexities are far beyond protonated or deprotonated organic molecules. There are tremendous endogenous organic and metallic metabolites regulating oxidation-reduction homeostasis that cannot be protonated or deprotonated. We describe an electron-driven ionization paradigm for mass spectrometric imaging of organic and metallic metabolites based on the charge and energy flow at the plasmonic metal-molecule interface. Enhanced plasmonic electron transfer was observed on Au sputtered ITO glass slides that were made with a physical vapor deposition approach. Plasmon-induced interfacial charge-transfer transition (PICTT) enables the decay of plasmons by direct excitation of electrons from Au atoms to strongly coupled electron receptors in tissue sections that are blotted on Au sputtered ITO slides. The highly reactive plasmonic hot electrons facilitate not only the mass spectrometric imaging of endogenous organic metabolites but also the surface plasmon-driven chemical reactions that can generate coordinative species for the visualization of endogenous metal ions. Beyond the biological application, the PICTT MS technique provides a way to tackle with the nature of electronic excitations at the plasmon-molecule interface that has been challenging because of the lack of a suitable experimental tool to directly monitor the outcomes of the interaction of the electron with an adsorbate.
质子化/去质子化是当前电喷雾电离(ESI)和基质辅助激光解吸电离质谱(MALDI MS)成像中有机分子的主要电离机制。但细胞的复杂性远不止于质子化或去质子化的有机分子。存在大量调节氧化还原稳态的内源性有机和金属代谢物,它们无法进行质子化或去质子化。我们基于等离子体金属 - 分子界面处的电荷和能量流动,描述了一种用于有机和金属代谢物质谱成像的电子驱动电离模式。在用物理气相沉积方法制备的溅射金的ITO玻璃载玻片上观察到了增强的等离子体电子转移。等离子体诱导的界面电荷转移跃迁(PICTT)通过将电子从金原子直接激发到吸附在溅射金的ITO载玻片上的组织切片中的强耦合电子受体,实现了等离子体的衰减。高反应性的等离子体热电子不仅促进了内源性有机代谢物的质谱成像,还促进了表面等离子体驱动的化学反应,这些反应可以生成用于可视化内源性金属离子的配位物种。除了生物学应用外,PICTT MS技术还提供了一种解决等离子体 - 分子界面处电子激发性质的方法,由于缺乏直接监测电子与吸附物相互作用结果的合适实验工具,这一问题一直具有挑战性。