Tang Haibin, Chen Chih-Jung, Huang Zhulin, Bright Joeseph, Meng Guowen, Liu Ru-Shi, Wu Nianqiang
Key Laboratory of Materials Physics, and Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China.
Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
J Chem Phys. 2020 Jun 14;152(22):220901. doi: 10.1063/5.0005334.
In plasmonic metals, surface plasmon resonance decays and generates hot electrons and hot holes through non-radiative Landau damping. These hot carriers are highly energetic, which can be modulated by the plasmonic material, size, shape, and surrounding dielectric medium. A plasmonic metal nanostructure, which can absorb incident light in an extended spectral range and transfer the absorbed light energy to adjacent molecules or semiconductors, functions as a "plasmonic photosensitizer." This article deals with the generation, emission, transfer, and energetics of plasmonic hot carriers. It also describes the mechanisms of hot electron transfer from the plasmonic metal to the surface adsorbates or to the adjacent semiconductors. In addition, this article highlights the applications of plasmonic hot electrons in photodetectors, photocatalysts, photoelectrochemical cells, photovoltaics, biosensors, and chemical sensors. It discusses the applications and the design principles of plasmonic materials and devices.
在等离子体金属中,表面等离子体共振通过非辐射朗道阻尼衰减并产生热电子和热空穴。这些热载流子能量很高,其能量可由等离子体材料、尺寸、形状以及周围的介电介质进行调制。等离子体金属纳米结构能够在扩展的光谱范围内吸收入射光,并将吸收的光能转移至相邻分子或半导体,其作用类似于“等离子体光敏剂”。本文探讨了等离子体热载流子的产生、发射、转移及能量特性。文中还描述了热电子从等离子体金属转移至表面吸附物或相邻半导体的机制。此外,本文重点介绍了等离子体热电子在光电探测器、光催化剂、光电化学电池、光伏器件、生物传感器和化学传感器中的应用。文中讨论了等离子体材料及器件的应用和设计原理。