Suppr超能文献

使用BirA对纯化蛋白质进行位点特异性生物素化。

Site-specific biotinylation of purified proteins using BirA.

作者信息

Fairhead Michael, Howarth Mark

机构信息

Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.

出版信息

Methods Mol Biol. 2015;1266:171-84. doi: 10.1007/978-1-4939-2272-7_12.

Abstract

The binding between biotin and streptavidin or avidin is one of the strongest known non-covalent biological interactions. The (strept)avidin-biotin interaction has been widely used for decades in biological research and biotechnology. Therefore labeling of purified proteins by biotin is a powerful way to achieve protein capture, immobilization, and functionalization, as well as multimerizing or bridging molecules. Chemical biotinylation often generates heterogeneous products, which may have impaired function. Enzymatic biotinylation with E. coli biotin ligase (BirA) is highly specific in covalently attaching biotin to the 15 amino acid AviTag peptide, giving a homogeneous product with high yield. AviTag can conveniently be added genetically at the N-terminus, C-terminus, or in exposed loops of a target protein. We describe here procedures for AviTag insertion by inverse PCR, purification of BirA fused to glutathione-S-transferase (GST-BirA) from E. coli, BirA biotinylation of purified protein, and gel-shift analysis by SDS-PAGE to quantify the extent of biotinylation.

摘要

生物素与链霉亲和素或抗生物素蛋白之间的结合是已知最强的非共价生物相互作用之一。(链霉)抗生物素蛋白-生物素相互作用在生物研究和生物技术领域已广泛应用数十年。因此,用生物素标记纯化的蛋白质是实现蛋白质捕获、固定化、功能化以及使分子多聚化或桥接的有效方法。化学生物素化常常产生异质产物,其功能可能受损。用大肠杆菌生物素连接酶(BirA)进行酶促生物素化在将生物素共价连接到15个氨基酸的AviTag肽上具有高度特异性,可产生高产率的同质产物。AviTag可以方便地通过基因手段添加到目标蛋白的N端、C端或暴露环中。我们在此描述通过反向PCR插入AviTag的方法、从大肠杆菌中纯化与谷胱甘肽-S-转移酶融合的BirA(GST-BirA)、对纯化蛋白进行BirA生物素化以及通过SDS-PAGE进行凝胶迁移分析以定量生物素化程度的步骤。

相似文献

1
Site-specific biotinylation of purified proteins using BirA.
Methods Mol Biol. 2015;1266:171-84. doi: 10.1007/978-1-4939-2272-7_12.
2
Expression and purification of E. coli BirA biotin ligase for in vitro biotinylation.
Protein Expr Purif. 2012 Mar;82(1):162-7. doi: 10.1016/j.pep.2011.12.008. Epub 2012 Jan 2.
3
Evaluation of two novel tag-based labelling technologies for site-specific modification of proteins.
Int J Biol Macromol. 2006 Aug 15;39(1-3):66-76. doi: 10.1016/j.ijbiomac.2006.01.012. Epub 2006 Feb 28.
7
In Vivo Biotinylation of Antigens in E. coli.
Methods Mol Biol. 2017;1586:337-344. doi: 10.1007/978-1-4939-6887-9_22.
8
Towards improving proximity labeling by the biotin ligase BirA.
Methods. 2019 Mar 15;157:66-79. doi: 10.1016/j.ymeth.2018.11.003. Epub 2018 Nov 10.

引用本文的文献

1
Protein-based tools for the detection and characterisation of Oropouche virus infection.
EMBO Mol Med. 2025 Aug 11. doi: 10.1038/s44321-025-00291-7.
2
Temperate phages enhance host fitness via RNA-guided flagellar remodeling.
bioRxiv. 2025 Jul 22:2025.07.22.666180. doi: 10.1101/2025.07.22.666180.
3
BioID2-Based Proximity Labeling in Adult Zebrafish.
Methods Mol Biol. 2025;2953:205-214. doi: 10.1007/978-1-0716-4694-6_13.
4
Anti-IgD nanobodies as novel tools for studying human IgD biology.
Sci Rep. 2025 Jul 8;15(1):24455. doi: 10.1038/s41598-025-09118-4.
5
Improving the solubility of single domain antibodies using VH-like hallmark residues.
Protein Sci. 2025 Jul;34(7):e70189. doi: 10.1002/pro.70189.
6
Utilization of universal-targeting mSA2 CAR-T cells for the treatment of glioblastoma.
Oncoimmunology. 2025 Dec;14(1):2518631. doi: 10.1080/2162402X.2025.2518631. Epub 2025 Jun 15.
7
Membrane phosphoinositides allosterically tune β-arrestin dynamics to facilitate GPCR core engagement.
bioRxiv. 2025 Jun 8:2025.06.06.658200. doi: 10.1101/2025.06.06.658200.

本文引用的文献

1
Imaging trans-cellular neurexin-neuroligin interactions by enzymatic probe ligation.
PLoS One. 2013;8(2):e52823. doi: 10.1371/journal.pone.0052823. Epub 2013 Feb 14.
4
DOLORS: versatile strategy for internal labeling and domain localization in electron microscopy.
Structure. 2012 Dec 5;20(12):1995-2002. doi: 10.1016/j.str.2012.10.019.
5
Ideal, catch, and slip bonds in cadherin adhesion.
Proc Natl Acad Sci U S A. 2012 Nov 13;109(46):18815-20. doi: 10.1073/pnas.1208349109. Epub 2012 Oct 29.
6
Engineered ascorbate peroxidase as a genetically encoded reporter for electron microscopy.
Nat Biotechnol. 2012 Nov;30(11):1143-8. doi: 10.1038/nbt.2375. Epub 2012 Oct 21.
7
Stable, high-affinity streptavidin monomer for protein labeling and monovalent biotin detection.
Biotechnol Bioeng. 2013 Jan;110(1):57-67. doi: 10.1002/bit.24605. Epub 2012 Aug 8.
8
Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources.
J Biol Chem. 2012 Aug 17;287(34):28686-96. doi: 10.1074/jbc.M112.372680. Epub 2012 Jun 28.
9
Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering.
J Am Chem Soc. 2012 Jul 18;134(28):11338-41. doi: 10.1021/ja303226x. Epub 2012 Jul 2.
10
Flagellar hook flexibility is essential for bundle formation in swimming Escherichia coli cells.
J Bacteriol. 2012 Jul;194(13):3495-501. doi: 10.1128/JB.00209-12. Epub 2012 Apr 20.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验