Janetzko John, Deutsch Jonathan, Shi Yuqi, Siepe Dirk H, Masureel Matthieu, Liu Weijing, Viner Rosa, Inoue Asuka, Kobilka Brian K, Shivnaraine Rabindra V
Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA.
Present address: Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
bioRxiv. 2025 Jun 8:2025.06.06.658200. doi: 10.1101/2025.06.06.658200.
Arrestin proteins bind active G protein-coupled receptors (GPCRs) through coordinated protein-protein, protein-phosphate, and protein-lipid interactions to attenuate G protein signaling and promote GPCR internalization and trafficking. While there are hundreds of diverse GPCRs, only two β-arrestin isoforms (βarrs) must recognize and engage this wide range of receptors with varied phosphorylation patterns. Traditional models suggest that βarr activation requires displacement of its autoinhibitory C-tail by a phosphorylated GPCR C-terminus; however, this paradigm fails to explain how minimally phosphorylated GPCRs still complex with βarrs. Using single-molecule Förster resonance energy transfer imaging and hydrogen-deuterium exchange mass spectrometry, we observe basal dynamics in which the βarr1 C-tail spontaneously releases from the N-domain, transiently adopting an active conformation that can facilitate binding of the phosphorylated GPCR C-terminus. We further demonstrate the importance of an intermediate state of βarr1 arising from spontaneous C-tail release stabilized by the membrane phosphoinositide PI(4,5)P. Both PI(4,5)P and mutations in the proximal or middle regions of the C-tail shift βarr1 towards a partially released state, revealing an allosteric connection that informs a refined model for βarr activation. In this model, membrane engagement conformationally primes βarrs prior to receptor binding, thereby explaining how βarrs are recruited by diverse GPCRs, even those with limited C-terminal phosphorylation.
抑制蛋白通过协调的蛋白质-蛋白质、蛋白质-磷酸和蛋白质-脂质相互作用结合活性G蛋白偶联受体(GPCR),以减弱G蛋白信号传导并促进GPCR的内化和运输。虽然有数百种不同的GPCR,但只有两种β-抑制蛋白亚型(βarrs)必须识别并结合具有不同磷酸化模式的广泛受体。传统模型表明,βarr激活需要磷酸化的GPCR C末端取代其自身抑制性C末端;然而,这种范式无法解释磷酸化程度最低的GPCR如何仍与βarrs形成复合物。使用单分子Förster共振能量转移成像和氢-氘交换质谱,我们观察到基础动力学,其中βarr1 C末端从N结构域自发释放,短暂采用一种活性构象,可促进磷酸化的GPCR C末端的结合。我们进一步证明了由膜磷酸肌醇PI(4,5)P稳定的βarr1自发C末端释放产生的中间状态的重要性。PI(4,5)P以及C末端近端或中间区域的突变都使βarr1向部分释放状态转变,揭示了一种变构联系,为βarr激活提供了一个完善的模型。在这个模型中,膜结合在受体结合之前对βarrs进行构象预激活,从而解释了βarrs如何被多种GPCR招募,即使是那些C末端磷酸化有限的GPCR。