van Bergeijk Petra, Adrian Max, Hoogenraad Casper C, Kapitein Lukas C
Cell Biology, Department of Biology, Faculty of Science, Utrecht University, 3584 CH Utrecht, the Netherlands.
Nature. 2015 Feb 5;518(7537):111-114. doi: 10.1038/nature14128. Epub 2015 Jan 7.
Proper positioning of organelles by cytoskeleton-based motor proteins underlies cellular events such as signalling, polarization and growth. For many organelles, however, the precise connection between position and function has remained unclear, because strategies to control intracellular organelle positioning with spatiotemporal precision are lacking. Here we establish optical control of intracellular transport by using light-sensitive heterodimerization to recruit specific cytoskeletal motor proteins (kinesin, dynein or myosin) to selected cargoes. We demonstrate that the motility of peroxisomes, recycling endosomes and mitochondria can be locally and repeatedly induced or stopped, allowing rapid organelle repositioning. We applied this approach in primary rat hippocampal neurons to test how local positioning of recycling endosomes contributes to axon outgrowth and found that dynein-driven removal of endosomes from axonal growth cones reversibly suppressed axon growth, whereas kinesin-driven endosome enrichment enhanced growth. Our strategy for optogenetic control of organelle positioning will be widely applicable to explore site-specific organelle functions in different model systems.
基于细胞骨架的马达蛋白对细胞器进行正确定位是细胞信号传导、极化和生长等细胞活动的基础。然而,对于许多细胞器来说,其位置与功能之间的确切联系仍不清楚,因为缺乏以时空精度控制细胞内细胞器定位的策略。在这里,我们通过利用光敏感异源二聚化将特定的细胞骨架马达蛋白(驱动蛋白、动力蛋白或肌球蛋白)招募到选定的货物上,建立了对细胞内运输的光学控制。我们证明,过氧化物酶体、循环内体和线粒体的运动性可以在局部反复诱导或停止,从而实现细胞器的快速重新定位。我们将这种方法应用于原代大鼠海马神经元,以测试循环内体的局部定位如何促进轴突生长,结果发现动力蛋白驱动的内体从轴突生长锥的移除会可逆地抑制轴突生长,而驱动蛋白驱动的内体富集则会促进生长。我们对细胞器定位进行光遗传学控制的策略将广泛适用于探索不同模型系统中特定部位的细胞器功能。