Suppr超能文献

智能水质监测系统综述

A survey of smart water quality monitoring system.

作者信息

Dong Jianhua, Wang Guoyin, Yan Huyong, Xu Ji, Zhang Xuerui

机构信息

Institute of Electronic Information & Technology, Chongqing Institutes of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China,

出版信息

Environ Sci Pollut Res Int. 2015 Apr;22(7):4893-906. doi: 10.1007/s11356-014-4026-x. Epub 2015 Jan 6.

Abstract

The smart water quality monitoring, regarded as the future water quality monitoring technology, catalyzes progress in the capabilities of data collection, communication, data analysis, and early warning. In this article, we survey the literature till 2014 on the enabling technologies for the Smart Water Quality Monitoring System. We explore three major subsystems, namely the data collection subsystem, the data transmission subsystem, and the data management subsystem from the view of data acquiring, data transmission, and data analysis. Specifically, for the data collection subsystem, we explore selection of water quality parameters, existing technology of online water quality monitoring, identification of the locations of sampling stations, and determination of the sampling frequencies. For the data transmission system, we explore data transmission network architecture and data communication management. For the data management subsystem, we explore water quality analysis and prediction, water quality evaluation, and water quality data storage. We also propose possible challenges and future directions for each subsystem.

摘要

智能水质监测作为未来的水质监测技术,推动了数据采集、通信、数据分析和预警能力的进步。在本文中,我们调研了截至2014年关于智能水质监测系统支撑技术的文献。我们从数据获取、数据传输和数据分析的角度探索了三个主要子系统,即数据采集子系统、数据传输子系统和数据管理子系统。具体而言,对于数据采集子系统,我们探讨了水质参数的选择、在线水质监测的现有技术、采样站位置的确定以及采样频率的确定。对于数据传输系统,我们探讨了数据传输网络架构和数据通信管理。对于数据管理子系统,我们探讨了水质分析与预测、水质评价以及水质数据存储。我们还针对每个子系统提出了可能面临的挑战和未来发展方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验