Suppr超能文献

全基因组范围内人类剪接分支点的发现。

Genome-wide discovery of human splicing branchpoints.

作者信息

Mercer Tim R, Clark Michael B, Andersen Stacey B, Brunck Marion E, Haerty Wilfried, Crawford Joanna, Taft Ryan J, Nielsen Lars K, Dinger Marcel E, Mattick John S

机构信息

Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; St. Vincent's Clinical School, Faculty of Medicine, UNSW Australia, Sydney, New South Wales 2052, Australia;

Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia; MRC Functional Genomics Unit, Department of Physiology, Anatomy, and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom;

出版信息

Genome Res. 2015 Feb;25(2):290-303. doi: 10.1101/gr.182899.114. Epub 2015 Jan 5.

Abstract

During the splicing reaction, the 5' intron end is joined to the branchpoint nucleotide, selecting the next exon to incorporate into the mature RNA and forming an intron lariat, which is excised. Despite a critical role in gene splicing, the locations and features of human splicing branchpoints are largely unknown. We use exoribonuclease digestion and targeted RNA-sequencing to enrich for sequences that traverse the lariat junction and, by split and inverted alignment, reveal the branchpoint. We identify 59,359 high-confidence human branchpoints in >10,000 genes, providing a first map of splicing branchpoints in the human genome. Branchpoints are predominantly adenosine, highly conserved, and closely distributed to the 3' splice site. Analysis of human branchpoints reveals numerous novel features, including distinct features of branchpoints for alternatively spliced exons and a family of conserved sequence motifs overlapping branchpoints we term B-boxes, which exhibit maximal nucleotide diversity while maintaining interactions with the keto-rich U2 snRNA. Different B-box motifs exhibit divergent usage in vertebrate lineages and associate with other splicing elements and distinct intron-exon architectures, suggesting integration within a broader regulatory splicing code. Lastly, although branchpoints are refractory to common mutational processes and genetic variation, mutations occurring at branchpoint nucleotides are enriched for disease associations.

摘要

在剪接反应过程中,5' 内含子末端与分支点核苷酸相连,选择下一个外显子纳入成熟RNA并形成内含子套索,然后将其切除。尽管分支点在基因剪接中起关键作用,但人类剪接分支点的位置和特征在很大程度上尚不清楚。我们使用外切核糖核酸酶消化和靶向RNA测序来富集穿越套索连接点的序列,并通过拆分和反向比对来揭示分支点。我们在一万多个基因中鉴定出59359个高可信度的人类分支点,提供了人类基因组中剪接分支点的首张图谱。分支点主要为腺苷,高度保守,且紧密分布于3' 剪接位点。对人类分支点的分析揭示了许多新特征,包括可变剪接外显子分支点的独特特征,以及一类与分支点重叠的保守序列基序,我们将其称为B盒,它们在保持与富含酮基的U2小核RNA相互作用的同时展现出最大的核苷酸多样性。不同的B盒基序在脊椎动物谱系中表现出不同的使用情况,并与其他剪接元件及不同的内含子 - 外显子结构相关联,表明其整合于更广泛的调控剪接密码中。最后,尽管分支点对常见的突变过程和遗传变异具有抗性,但发生在分支点核苷酸上的突变却富集了疾病关联性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28e2/4315302/10260de37d52/290fig1.jpg

相似文献

1
Genome-wide discovery of human splicing branchpoints.
Genome Res. 2015 Feb;25(2):290-303. doi: 10.1101/gr.182899.114. Epub 2015 Jan 5.
2
Predicting human splicing branchpoints by combining sequence-derived features and multi-label learning methods.
BMC Bioinformatics. 2017 Dec 1;18(Suppl 13):464. doi: 10.1186/s12859-017-1875-6.
3
A sequence-based, deep learning model accurately predicts RNA splicing branchpoints.
RNA. 2018 Dec;24(12):1647-1658. doi: 10.1261/rna.066290.118. Epub 2018 Sep 17.
4
Most human introns are recognized via multiple and tissue-specific branchpoints.
Genes Dev. 2018 Apr 1;32(7-8):577-591. doi: 10.1101/gad.312058.118. Epub 2018 Apr 17.
5
A role for branchpoints in splicing in vivo.
Nature. 1985;315(6018):430-2. doi: 10.1038/315430a0.
7
Mutation of putative branchpoint consensus sequences in plant introns reduces splicing efficiency.
Plant J. 1996 Mar;9(3):369-80. doi: 10.1046/j.1365-313x.1996.09030369.x.
8
Computational analysis of splicing errors and mutations in human transcripts.
BMC Genomics. 2008 Jan 14;9:13. doi: 10.1186/1471-2164-9-13.
9
Systematic characterization of short intronic splicing-regulatory elements in SMN2 pre-mRNA.
Nucleic Acids Res. 2022 Jan 25;50(2):731-749. doi: 10.1093/nar/gkab1280.
10
Intronic alternative splicing regulators identified by comparative genomics in nematodes.
PLoS Comput Biol. 2006 Jul 14;2(7):e86. doi: 10.1371/journal.pcbi.0020086. Epub 2006 Jun 5.

引用本文的文献

2
DBR1 orchestrates the fate of lariat RNA: debranching-dependent turnover and function.
Nucleic Acids Res. 2025 Jul 8;53(13). doi: 10.1093/nar/gkaf639.
4
RNA Mis-Splicing Effects of Noncanonical Splicing Variants in Limb-Girdle Muscular Dystrophy Type R1/2A.
Neurol Genet. 2025 Apr 1;11(3):e200259. doi: 10.1212/NXG.0000000000200259. eCollection 2025 Jun.
5
Cancer-associated SF3B1 mutation K700E causes widespread changes in U2/branchpoint recognition without altering splicing.
Proc Natl Acad Sci U S A. 2025 Apr;122(13):e2423776122. doi: 10.1073/pnas.2423776122. Epub 2025 Mar 26.
6
Data-driven insights to inform splice-altering variant assessment.
Am J Hum Genet. 2025 Apr 3;112(4):764-778. doi: 10.1016/j.ajhg.2025.02.012. Epub 2025 Mar 7.
9
A validated heart-specific model for splice-disrupting variants in childhood heart disease.
Genome Med. 2024 Oct 15;16(1):119. doi: 10.1186/s13073-024-01383-8.
10

本文引用的文献

1
LaSSO, a strategy for genome-wide mapping of intronic lariats and branch points using RNA-seq.
Genome Res. 2014 Jul;24(7):1169-79. doi: 10.1101/gr.166819.113. Epub 2014 Apr 7.
2
Targeted sequencing for gene discovery and quantification using RNA CaptureSeq.
Nat Protoc. 2014 May;9(5):989-1009. doi: 10.1038/nprot.2014.058. Epub 2014 Apr 3.
3
The UCSC Genome Browser database: 2014 update.
Nucleic Acids Res. 2014 Jan;42(Database issue):D764-70. doi: 10.1093/nar/gkt1168. Epub 2013 Nov 21.
4
Circular intronic long noncoding RNAs.
Mol Cell. 2013 Sep 26;51(6):792-806. doi: 10.1016/j.molcel.2013.08.017. Epub 2013 Sep 12.
5
Lariat sequencing in a unicellular yeast identifies regulated alternative splicing of exons that are evolutionarily conserved with humans.
Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12762-7. doi: 10.1073/pnas.1218353110. Epub 2013 Jul 16.
6
Base Composition Characteristics of Mammalian miRNAs.
J Nucleic Acids. 2013;2013:951570. doi: 10.1155/2013/951570. Epub 2013 Feb 24.
8
The significant other: splicing by the minor spliceosome.
Wiley Interdiscip Rev RNA. 2013 Jan-Feb;4(1):61-76. doi: 10.1002/wrna.1141. Epub 2012 Oct 16.
9
GENCODE: the reference human genome annotation for The ENCODE Project.
Genome Res. 2012 Sep;22(9):1760-74. doi: 10.1101/gr.135350.111.
10
Landscape of transcription in human cells.
Nature. 2012 Sep 6;489(7414):101-8. doi: 10.1038/nature11233.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验