Tan Eric M M, Amirjalayer Saeed, Smolarek Szymon, Vdovin Alexander, Zerbetto Francesco, Buma Wybren Jan
Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
Dipartimento di Chimica 'G. Ciamician', Università di Bologna, via F. Selmi 2, I-40126 Bologna, Italy.
Nat Commun. 2015 Jan 6;6:5860. doi: 10.1038/ncomms6860.
Azobenzene, a versatile and polymorphic molecule, has been extensively and successfully used for photoswitching applications. The debate over its photoisomerization mechanism leveraged on the computational scrutiny with ever-increasing levels of theory. However, the most resolved absorption spectrum for the transition to S1(nπ*) has not followed the computational advances and is more than half a century old. Here, using jet-cooled molecular beam and multiphoton ionization techniques we report the first high-resolution spectra of S1(nπ*) and S2(ππ*). The photophysical characterization reveals directly the structural changes upon excitation and the timescales of dynamical processes. For S1(nπ*), we find that changes in the hybridization of the nitrogen atoms are the driving force that triggers isomerization. In combination with quantum chemical calculations we conclude that photoisomerization occurs along an inversion-assisted torsional pathway with a barrier of ~2 kcal mol(-1). This methodology can be extended to photoresponsive molecular systems so far deemed non-accessible to high-resolution spectroscopy.
偶氮苯是一种多功能的多晶型分子,已被广泛且成功地用于光开关应用。关于其光异构化机制的争论借助于理论水平不断提高的计算研究。然而,对于向S1(nπ*)跃迁的最精确吸收光谱并未跟上计算进展,且已有半个多世纪的历史。在此,我们使用喷射冷却分子束和多光子电离技术,报告了S1(nπ*)和S2(ππ*)的首个高分辨率光谱。光物理表征直接揭示了激发时的结构变化以及动力学过程的时间尺度。对于S1(nπ*),我们发现氮原子杂化的变化是触发异构化的驱动力。结合量子化学计算,我们得出光异构化沿着反转辅助扭转路径发生,势垒约为2千卡/摩尔(-1)。这种方法可以扩展到迄今为止被认为无法进行高分辨率光谱分析的光响应分子系统。