State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
Development. 2015 Feb 1;142(3):465-76. doi: 10.1242/dev.112946. Epub 2015 Jan 6.
Unraveling the mechanisms underlying early neural differentiation of embryonic stem cells (ESCs) is crucial to developing cell-based therapies of neurodegenerative diseases. Neural fate acquisition is proposed to be controlled by a 'default' mechanism, for which the molecular regulation is not well understood. In this study, we investigated the functional roles of Mediator Med23 in pluripotency and lineage commitment of murine ESCs. Unexpectedly, we found that, despite the largely unchanged pluripotency and self-renewal of ESCs, Med23 depletion rendered the cells prone to neural differentiation in different differentiation assays. Knockdown of two other Mediator subunits, Med1 and Med15, did not alter the neural differentiation of ESCs. Med15 knockdown selectively inhibited endoderm differentiation, suggesting the specificity of cell fate control by distinctive Mediator subunits. Gene profiling revealed that Med23 depletion attenuated BMP signaling in ESCs. Mechanistically, MED23 modulated Bmp4 expression by controlling the activity of ETS1, which is involved in Bmp4 promoter-enhancer communication. Interestingly, med23 knockdown in zebrafish embryos also enhanced neural development at early embryogenesis, which could be reversed by co-injection of bmp4 mRNA. Taken together, our study reveals an intrinsic, restrictive role of MED23 in early neural development, thus providing new molecular insights for neural fate determination.
阐明胚胎干细胞 (ESCs) 早期神经分化的机制对于开发神经退行性疾病的基于细胞的治疗方法至关重要。神经命运的获得被认为受到“默认”机制的控制,而这种机制的分子调控尚不清楚。在这项研究中,我们研究了 Mediator Med23 在小鼠 ESCs 多能性和谱系分化中的功能作用。出乎意料的是,我们发现尽管 ESCs 的多能性和自我更新基本不变,但 Med23 的耗竭使细胞易于在不同的分化实验中向神经分化。敲低另外两个 Mediator 亚基 Med1 和 Med15 不会改变 ESCs 的神经分化。Med15 的敲低选择性地抑制了内胚层分化,这表明不同的 Mediator 亚基对细胞命运控制具有特异性。基因谱分析显示 Med23 的耗竭减弱了 ESCs 中的 BMP 信号。在机制上,MED23 通过控制 ETS1 的活性来调节 Bmp4 的表达,ETS1 参与 Bmp4 启动子增强子通讯。有趣的是,斑马鱼胚胎中 med23 的敲低也增强了早期胚胎发生中的神经发育,这可以通过共注射 bmp4 mRNA 来逆转。总之,我们的研究揭示了 MED23 在早期神经发育中的内在限制作用,从而为神经命运决定提供了新的分子见解。