Suppr超能文献

相同脑电图信号分析过程中状态熵与脑电双频指数的差异:与两种随机麻醉技术的比较

Differences between state entropy and bispectral index during analysis of identical electroencephalogram signals: a comparison with two randomised anaesthetic techniques.

作者信息

Pilge Stefanie, Kreuzer Matthias, Karatchiviev Veliko, Kochs Eberhard F, Malcharek Michael, Schneider Gerhard

机构信息

From the Department of Anaesthesiology, Helios Clinic Wuppertal, Witten/Herdecke University, Wuppertal (SP, VK, GS); Department of Anaesthesiology, Klinikum rechts der Isar, Technische Universität München, Munich (MK, EFK); and Department of Anaesthesiology, Intensive Care and Pain Therapy, Klinikum St. Georg, Leipzig (MM), Germany *Stefanie Pilge and Matthias Kreuzer contributed equally to this work.

出版信息

Eur J Anaesthesiol. 2015 May;32(5):354-65. doi: 10.1097/EJA.0000000000000189.

Abstract

BACKGROUND

It is claimed that bispectral index (BIS) and state entropy reflect an identical clinical spectrum, the hypnotic component of anaesthesia. So far, it is not known to what extent different devices display similar index values while processing identical electroencephalogram (EEG) signals.

OBJECTIVE

To compare BIS and state entropy during analysis of identical EEG data. Inspection of raw EEG input to detect potential causes of erroneous index calculation.

DESIGN

Offline re-analysis of EEG data from a randomised, single-centre controlled trial using the Entropy Module and an Aspect A-2000 monitor.

SETTING

Klinikum rechts der Isar, Technische Universität München, Munich.

PATIENTS

Forty adult patients undergoing elective surgery under general anaesthesia.

INTERVENTIONS

Blocked randomisation of 20 patients per anaesthetic group (sevoflurane/remifentanil or propofol/remifentanil). Isolated forearm technique for differentiation between consciousness and unconsciousness.

MAIN OUTCOME MEASURES

Prediction probability (PK) of state entropy to discriminate consciousness from unconsciousness. Correlation and agreement between state entropy and BIS from deep to light hypnosis. Analysis of raw EEG compared with index values that are in conflict with clinical examination, with frequency measures (frequency bands/Spectral Edge Frequency 95) and visual inspection for physiological EEG patterns (e.g. beta or delta arousal), pathophysiological features such as high-frequency signals (electromyogram/high-frequency EEG or eye fluttering/saccades), different types of electro-oculogram or epileptiform EEG and technical artefacts.

RESULTS

PK of state entropy was 0.80 and of BIS 0.84; correlation coefficient of state entropy with BIS 0.78. Nine percent BIS and 14% state entropy values disagreed with clinical examination. Highest incidence of disagreement occurred after state transitions, in particular for state entropy after loss of consciousness during sevoflurane anaesthesia. EEG sequences which led to false 'conscious' index values often showed high-frequency signals and eye blinks. High-frequency EEG/electromyogram signals were pooled because a separation into EEG and fast electro-oculogram, for example eye fluttering or saccades, on the basis of a single EEG channel may not be very reliable. These signals led to higher Spectral Edge Frequency 95 and ratio of relative beta and gamma band power than EEG signals, indicating adequate unconscious classification. The frequency of other artefacts that were assignable, for example technical artefacts, movement artefacts, was negligible and they were excluded from analysis.

CONCLUSION

High-frequency signals and eye blinks may account for index values that falsely indicate consciousness. Compared with BIS, state entropy showed more false classifications of the clinical state at transition between consciousness and unconsciousness.

摘要

背景

有人声称脑电双频指数(BIS)和状态熵反映了相同的临床谱,即麻醉的催眠成分。到目前为止,尚不清楚不同设备在处理相同脑电图(EEG)信号时,其显示的指数值在多大程度上相似。

目的

比较相同EEG数据分析过程中的BIS和状态熵。检查原始EEG输入以检测指数计算错误的潜在原因。

设计

使用熵模块和Aspect A - 2000监测仪,对一项随机、单中心对照试验的EEG数据进行离线重新分析。

设置

慕尼黑工业大学伊萨尔河右岸医院,慕尼黑。

患者

40例接受全身麻醉下择期手术的成年患者。

干预措施

每个麻醉组(七氟醚/瑞芬太尼或丙泊酚/瑞芬太尼)20例患者进行分组随机化。采用孤立前臂技术区分意识和无意识状态。

主要观察指标

状态熵区分意识和无意识状态的预测概率(PK)。从深度催眠到浅度催眠状态下状态熵与BIS之间的相关性和一致性。将原始EEG与与临床检查结果冲突的指数值进行比较,包括频率测量(频段/频谱边缘频率95)以及对生理性EEG模式(如β或δ唤醒)、病理生理特征(如高频信号(肌电图/高频EEG或眼颤/扫视))、不同类型的眼电图或癫痫样EEG以及技术伪迹进行视觉检查。

结果

状态熵的PK为0.80,BIS的PK为0.84;状态熵与BIS的相关系数为0.78。9%的BIS值和14%的状态熵值与临床检查结果不一致。不一致发生率最高出现在状态转换后,尤其是七氟醚麻醉期间意识丧失后状态熵的情况。导致错误“清醒”指数值的EEG序列通常显示高频信号和眨眼。高频EEG/肌电图信号合并在一起,因为基于单个EEG通道将其分离为EEG和快速眼电图(例如眼颤或扫视)可能不太可靠。这些信号导致频谱边缘频率95以及相对β和γ频段功率比高于EEG信号,表明无意识分类充分。其他可归因的伪迹(例如技术伪迹、运动伪迹)的频率可忽略不计,且将其排除在分析之外。

结论

高频信号和眨眼可能导致错误指示意识的指数值。与BIS相比,状态熵在意识和无意识状态转换时对临床状态的错误分类更多。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验