Suppr超能文献

大肠杆菌中染色体分离的物理模型揭示了力和DNA松弛的影响。

Physical modeling of chromosome segregation in escherichia coli reveals impact of force and DNA relaxation.

作者信息

Lampo Thomas J, Kuwada Nathan J, Wiggins Paul A, Spakowitz Andrew J

机构信息

Department of Chemical Engineering, Stanford University, Stanford, California.

Departments of Physics and Bioengineering, University of Washington, Seattle, Washington.

出版信息

Biophys J. 2015 Jan 6;108(1):146-53. doi: 10.1016/j.bpj.2014.10.074.

Abstract

The physical mechanism by which Escherichia coli segregates copies of its chromosome for partitioning into daughter cells is unknown, partly due to the difficulty in interpreting the complex dynamic behavior during segregation. Analysis of previous chromosome segregation measurements in E. coli demonstrates that the origin of replication exhibits processive motion with a mean displacement that scales as t(0.32). In this work, we develop a model for segregation of chromosomal DNA as a Rouse polymer in a viscoelastic medium with a force applied to a single monomer. Our model demonstrates that the observed power-law scaling of the mean displacement and the behavior of the velocity autocorrelation function is captured by accounting for the relaxation of the polymer chain and the viscoelastic environment. We show that the ratio of the mean displacement to the variance of the displacement during segregation events is a critical metric that eliminates the compounding effects of polymer and medium dynamics and provides the segregation force. We calculate the force of oriC segregation in E. coli to be ∼0.49 pN.

摘要

大肠杆菌将其染色体拷贝分离以分配到子细胞中的物理机制尚不清楚,部分原因是难以解释分离过程中复杂的动态行为。对大肠杆菌先前染色体分离测量的分析表明,复制起点表现出持续运动,其平均位移与t(0.32)成比例。在这项工作中,我们建立了一个模型,将染色体DNA视为粘弹性介质中的Rouse聚合物,并对单个单体施加力来进行分离。我们的模型表明,通过考虑聚合物链的弛豫和粘弹性环境,可以捕捉到观察到的平均位移的幂律缩放以及速度自相关函数的行为。我们表明,分离事件中平均位移与位移方差的比值是一个关键指标,它消除了聚合物和介质动力学的复合效应,并提供了分离力。我们计算出大肠杆菌中oriC分离的力约为0.49皮牛。

相似文献

2
Escherichia coli Chromosomal Loci Segregate from Midcell with Universal Dynamics.
Biophys J. 2016 Jun 21;110(12):2597-2609. doi: 10.1016/j.bpj.2016.04.046.
3
Induction of entropic segregation: the first step is the hardest.
Soft Matter. 2014 Aug 21;10(31):5836-41. doi: 10.1039/c4sm00286e. Epub 2014 Jun 30.
5
Mechanism for chromosome and minichromosome segregation in Escherichia coli.
J Mol Biol. 1987 Sep 20;197(2):195-204. doi: 10.1016/0022-2836(87)90118-5.
6
Mapping the driving forces of chromosome structure and segregation in Escherichia coli.
Nucleic Acids Res. 2013 Aug;41(15):7370-7. doi: 10.1093/nar/gkt468. Epub 2013 Jun 17.
7
Single-particle tracking of oriC-GFP fluorescent spots during chromosome segregation in Escherichia coli.
J Struct Biol. 2005 Sep;151(3):275-87. doi: 10.1016/j.jsb.2005.06.004.
8
DNA dynamics vary according to macrodomain topography in the E. coli chromosome.
Mol Microbiol. 2008 Jun;68(6):1418-27. doi: 10.1111/j.1365-2958.2008.06239.x. Epub 2008 Apr 11.
9
Chromosome segregation in Escherichia coli division: a free energy-driven string model.
Comput Biol Chem. 2007 Aug;31(4):257-64. doi: 10.1016/j.compbiolchem.2007.05.003. Epub 2007 May 22.
10
KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase.
EMBO J. 2005 Nov 2;24(21):3770-80. doi: 10.1038/sj.emboj.7600835. Epub 2005 Oct 6.

引用本文的文献

1
Leveraging polymer modeling to reconstruct chromatin connectivity from live images.
Biophys J. 2023 Sep 5;122(17):3532-3540. doi: 10.1016/j.bpj.2023.08.001. Epub 2023 Aug 4.
2
Stochastic nucleoid segregation dynamics as a source of the phenotypic variability in E. coli.
Biophys J. 2021 Nov 16;120(22):5107-5123. doi: 10.1016/j.bpj.2021.10.004. Epub 2021 Oct 8.
3
Self-organised segregation of bacterial chromosomal origins.
Elife. 2019 Aug 9;8:e46564. doi: 10.7554/eLife.46564.
4
Inferring Active Noise Characteristics from the Paired Observations of Anomalous Diffusion.
Polymers (Basel). 2018 Dec 20;11(1):2. doi: 10.3390/polym11010002.
5
Random Chromosome Partitioning in the Polyploid Bacterium HB27.
G3 (Bethesda). 2019 Apr 9;9(4):1249-1261. doi: 10.1534/g3.119.400086.
6
High-Copy-Number Plasmid Segregation-Single-Molecule Dynamics in Single Cells.
Biophys J. 2019 Mar 5;116(5):772-780. doi: 10.1016/j.bpj.2019.01.019. Epub 2019 Jan 29.
7
Subcellular Organization: A Critical Feature of Bacterial Cell Replication.
Cell. 2018 Mar 8;172(6):1271-1293. doi: 10.1016/j.cell.2018.01.014.
8
Escherichia coli Chromosomal Loci Segregate from Midcell with Universal Dynamics.
Biophys J. 2016 Jun 21;110(12):2597-2609. doi: 10.1016/j.bpj.2016.04.046.
9
Physical Modeling of Dynamic Coupling between Chromosomal Loci.
Biophys J. 2016 Jan 19;110(2):338-347. doi: 10.1016/j.bpj.2015.11.3520.
10
The role of MatP, ZapA and ZapB in chromosomal organization and dynamics in Escherichia coli.
Nucleic Acids Res. 2016 Feb 18;44(3):1216-26. doi: 10.1093/nar/gkv1484. Epub 2016 Jan 13.

本文引用的文献

1
Chemophoresis as a driving force for intracellular organization: Theory and application to plasmid partitioning.
Biophysics (Nagoya-shi). 2011 Sep 11;7:77-88. doi: 10.2142/biophysics.7.77. eCollection 2011.
2
Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation.
Elife. 2014 May 23;3:e02758. doi: 10.7554/eLife.02758.
3
A propagating ATPase gradient drives transport of surface-confined cellular cargo.
Proc Natl Acad Sci U S A. 2014 Apr 1;111(13):4880-5. doi: 10.1073/pnas.1401025111. Epub 2014 Feb 24.
4
Accessory factors promote AlfA-dependent plasmid segregation by regulating filament nucleation, disassembly, and bundling.
Proc Natl Acad Sci U S A. 2014 Feb 11;111(6):2176-81. doi: 10.1073/pnas.1304127111. Epub 2014 Jan 30.
5
RecA bundles mediate homology pairing between distant sisters during DNA break repair.
Nature. 2014 Feb 13;506(7487):249-53. doi: 10.1038/nature12868. Epub 2013 Dec 22.
6
Chromosome segregation by the Escherichia coli Min system.
Mol Syst Biol. 2013;9:686. doi: 10.1038/msb.2013.44.
7
Mapping the driving forces of chromosome structure and segregation in Escherichia coli.
Nucleic Acids Res. 2013 Aug;41(15):7370-7. doi: 10.1093/nar/gkt468. Epub 2013 Jun 17.
9
Memory effect and fluctuating anomalous dynamics of a tagged monomer.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Apr;87(4):040601. doi: 10.1103/PhysRevE.87.040601. Epub 2013 Apr 10.
10
Four-dimensional imaging of E. coli nucleoid organization and dynamics in living cells.
Cell. 2013 May 9;153(4):882-95. doi: 10.1016/j.cell.2013.04.006. Epub 2013 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验