Suppr超能文献

KOPS:通过定向FtsK转位酶来控制大肠杆菌染色体分离的DNA基序。

KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase.

作者信息

Bigot Sarah, Saleh Omar A, Lesterlin Christian, Pages Carine, El Karoui Meriem, Dennis Cynthia, Grigoriev Mikhail, Allemand Jean-François, Barre François-Xavier, Cornet François

机构信息

LMGM, CNRS, 118, route de Narbonne, Toulouse, France.

出版信息

EMBO J. 2005 Nov 2;24(21):3770-80. doi: 10.1038/sj.emboj.7600835. Epub 2005 Oct 6.

Abstract

Bacterial chromosomes are organized in replichores of opposite sequence polarity. This conserved feature suggests a role in chromosome dynamics. Indeed, sequence polarity controls resolution of chromosome dimers in Escherichia coli. Chromosome dimers form by homologous recombination between sister chromosomes. They are resolved by the combined action of two tyrosine recombinases, XerC and XerD, acting at a specific chromosomal site, dif, and a DNA translocase, FtsK, which is anchored at the division septum and sorts chromosomal DNA to daughter cells. Evidences suggest that DNA motifs oriented from the replication origin towards dif provide FtsK with the necessary information to faithfully distribute chromosomal DNA to either side of the septum, thereby bringing the dif sites together at the end of this process. However, the nature of the DNA motifs acting as FtsK orienting polar sequences (KOPS) was unknown. Using genetics, bioinformatics and biochemistry, we have identified a family of DNA motifs in the E. coli chromosome with KOPS activity.

摘要

细菌染色体以相反序列极性的复制子形式组织。这一保守特征表明其在染色体动态变化中发挥作用。事实上,序列极性控制大肠杆菌中染色体二聚体的解离。染色体二聚体通过姐妹染色体之间的同源重组形成。它们通过两种酪氨酸重组酶XerC和XerD在特定染色体位点dif的联合作用以及一种DNA转位酶FtsK来解离,FtsK锚定在分裂隔膜上并将染色体DNA分配到子细胞中。有证据表明,从复制起点朝向dif的DNA基序为FtsK提供了必要信息,使其能够将染色体DNA忠实地分配到隔膜两侧,从而在此过程结束时将dif位点聚集在一起。然而,作为FtsK定向极性序列(KOPS)的DNA基序的性质尚不清楚。通过遗传学、生物信息学和生物化学方法,我们在大肠杆菌染色体中鉴定出了具有KOPS活性的一类DNA基序。

相似文献

1
KOPS: DNA motifs that control E. coli chromosome segregation by orienting the FtsK translocase.
EMBO J. 2005 Nov 2;24(21):3770-80. doi: 10.1038/sj.emboj.7600835. Epub 2005 Oct 6.
2
FtsK, a literate chromosome segregation machine.
Mol Microbiol. 2007 Jun;64(6):1434-41. doi: 10.1111/j.1365-2958.2007.05755.x. Epub 2007 May 18.
3
Oriented loading of FtsK on KOPS.
Nat Struct Mol Biol. 2006 Nov;13(11):1026-8. doi: 10.1038/nsmb1159. Epub 2006 Oct 15.
4
FtsK actively segregates sister chromosomes in Escherichia coli.
Proc Natl Acad Sci U S A. 2013 Jul 2;110(27):11157-62. doi: 10.1073/pnas.1304080110. Epub 2013 Jun 18.
5
Extent of the activity domain and possible roles of FtsK in the Escherichia coli chromosome terminus.
Mol Microbiol. 2005 Jun;56(6):1539-48. doi: 10.1111/j.1365-2958.2005.04633.x.
6
KOPS-guided DNA translocation by FtsK safeguards Escherichia coli chromosome segregation.
Mol Microbiol. 2009 Feb;71(4):1031-42. doi: 10.1111/j.1365-2958.2008.06586.x. Epub 2009 Jan 1.
7
Delayed activation of Xer recombination at dif by FtsK during septum assembly in Escherichia coli.
Mol Microbiol. 2008 May;68(4):1018-28. doi: 10.1111/j.1365-2958.2008.06212.x. Epub 2008 Mar 19.
8
FtsK-dependent dimer resolution on multiple chromosomes in the pathogen Vibrio cholerae.
PLoS Genet. 2008 Sep 26;4(9):e1000201. doi: 10.1371/journal.pgen.1000201.
9
A defined terminal region of the E. coli chromosome shows late segregation and high FtsK activity.
PLoS One. 2011;6(7):e22164. doi: 10.1371/journal.pone.0022164. Epub 2011 Jul 20.
10
FtsK-dependent and -independent pathways of Xer site-specific recombination.
EMBO J. 1999 Oct 15;18(20):5724-34. doi: 10.1093/emboj/18.20.5724.

引用本文的文献

1
Linear dicentric chromosomes in bacterial natural isolates reveal common constraints for replicon fusion.
mBio. 2025 Jun 11;16(6):e0104625. doi: 10.1128/mbio.01046-25. Epub 2025 May 20.
2
Early onset of septal FtsK localization allows for efficient DNA segregation in SMC-deleted strains.
mBio. 2025 Mar 12;16(3):e0285924. doi: 10.1128/mbio.02859-24. Epub 2025 Jan 28.
5
Chromosome architecture as a determinant for biosynthetic diversity in .
Microb Genom. 2024 Nov;10(11). doi: 10.1099/mgen.0.001313.
6
Spatio-temporal organization of the chromosome from base to cellular length scales.
EcoSal Plus. 2024 Dec 12;12(1):eesp00012022. doi: 10.1128/ecosalplus.esp-0001-2022. Epub 2024 Jun 12.
7
Plasticity in the cell division processes of obligate intracellular bacteria.
Front Cell Infect Microbiol. 2023 Oct 9;13:1205488. doi: 10.3389/fcimb.2023.1205488. eCollection 2023.
8
Interplay between chromosomal architecture and termination of DNA replication in bacteria.
Front Microbiol. 2023 Jun 26;14:1180848. doi: 10.3389/fmicb.2023.1180848. eCollection 2023.
9
DNA Segregation in Enterobacteria.
EcoSal Plus. 2023 Dec 12;11(1):eesp00382020. doi: 10.1128/ecosalplus.esp-0038-2020. Epub 2023 May 9.

本文引用的文献

1
Dancing around the divisome: asymmetric chromosome segregation in Escherichia coli.
Genes Dev. 2005 Oct 1;19(19):2367-77. doi: 10.1101/gad.345305.
2
Roles for replichores and macrodomains in segregation of the Escherichia coli chromosome.
EMBO Rep. 2005 Jun;6(6):557-62. doi: 10.1038/sj.embor.7400428.
3
Analysis of DNA supercoil induction by FtsK indicates translocation without groove-tracking.
Nat Struct Mol Biol. 2005 May;12(5):436-40. doi: 10.1038/nsmb926. Epub 2005 Apr 10.
4
Sequence-directed DNA translocation by purified FtsK.
Science. 2005 Jan 28;307(5709):586-90. doi: 10.1126/science.1104885.
5
Genetic recombination and the cell cycle: what we have learned from chromosome dimers.
Mol Microbiol. 2004 Dec;54(5):1151-60. doi: 10.1111/j.1365-2958.2004.04356.x.
7
Twin DNA pumps of a hexameric helicase provide power to simultaneously melt two duplexes.
Mol Cell. 2004 Aug 13;15(3):453-65. doi: 10.1016/j.molcel.2004.06.039.
8
Fast, DNA-sequence independent translocation by FtsK in a single-molecule experiment.
EMBO J. 2004 Jun 16;23(12):2430-9. doi: 10.1038/sj.emboj.7600242. Epub 2004 May 27.
9
Asymmetric activation of Xer site-specific recombination by FtsK.
EMBO Rep. 2004 Apr;5(4):399-404. doi: 10.1038/sj.embor.7400116.
10
Decatenation of DNA circles by FtsK-dependent Xer site-specific recombination.
EMBO J. 2003 Dec 1;22(23):6399-407. doi: 10.1093/emboj/cdg589.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验