Lai Pin-Kuang, Lin Shiang-Tai
Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan.
J Comput Chem. 2015 Mar 30;36(8):507-17. doi: 10.1002/jcc.23822. Epub 2015 Jan 6.
The vibrational density of states (DoS), calculated from the Fourier transform of the velocity autocorrelation function, provides profound information regarding the structure and dynamic behavior of a system. However, it is often difficult to identify the exact vibrational mode associated with a specific frequency if the DoS is determined based on velocities in Cartesian coordinates. Here, the DoS is determined based on velocities in internal coordinates, calculated from Cartesian atomic velocities using a generalized Wilson's B-matrix. The DoS in internal coordinates allows for the correct detection of free dihedral rotations that may be mistaken as hindered rotation in Cartesian DoS. Furthermore, the pronounced enhancement of low frequency modes in Cartesian DoS for macromolecules should be attributed to the coupling of dihedral and angle motions. The internal DoS, thus deconvolutes the internal motions and provides fruitful insights to the dynamic behaviors of a system.
通过速度自相关函数的傅里叶变换计算得到的振动态密度(DoS),提供了有关系统结构和动态行为的深刻信息。然而,如果基于笛卡尔坐标中的速度来确定DoS,通常很难识别与特定频率相关的精确振动模式。在此,DoS是基于内坐标中的速度来确定的,内坐标中的速度是使用广义威尔逊B矩阵从笛卡尔原子速度计算得到的。内坐标中的DoS能够正确检测出可能在笛卡尔DoS中被误判为受阻旋转的自由二面角旋转。此外,大分子的笛卡尔DoS中低频模式的显著增强应归因于二面角运动和角度运动的耦合。因此,内DoS对内部运动进行了去卷积,并为系统的动态行为提供了丰富的见解。