Suppr超能文献

家蚕轻链与重链蛋白的丝光功能材料特性

Functional material features of Bombyx mori silk light versus heavy chain proteins.

作者信息

Zafar Muhammad S, Belton David J, Hanby Benjamin, Kaplan David L, Perry Carole C

机构信息

Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University , Clifton Lane, Nottingham, NG11 8NS United Kingdom.

出版信息

Biomacromolecules. 2015 Feb 9;16(2):606-14. doi: 10.1021/bm501667j. Epub 2015 Jan 20.

Abstract

Bombyx mori (BM) silk fibroin is composed of two different subunits: heavy chain and light chain fibroin linked by a covalent disulfide bond. Current methods of separating the two silk fractions is complicated and produces inadequate quantities of the isolated components for the study of the individual light and heavy chain silks with respect to new materials. We report a simple method of separating silk fractions using formic acid. The formic acid treatment partially releases predominately the light chain fragment (soluble fraction) and then the soluble fraction and insoluble fractions can be converted into new materials. The regenerated original (total) silk fibroin and the separated fractions (soluble vs insoluble) had different molecular weights and showed distinctive pH stabilities against aggregation/precipitation based on particle charging. All silk fractions could be electrospun to give fiber mats with viscosity of the regenerated fractions being the controlling factor for successful electrospinning. The silk fractions could be mixed to give blends with different proportions of the two fractions to modify the diameter and uniformity of the electrospun fibers formed. The soluble fraction containing the light chain was able to modify the viscosity by thinning the insoluble fraction containing heavy chain fragments, perhaps analogous to its role in natural fiber formation where the light chain provides increased mobility and the heavy chain producing shear thickening effects. The simplicity of this new separation method should enable access to these different silk protein fractions and accelerate the identification of methods, modifications, and potential applications of these materials in biomedical and industrial applications.

摘要

家蚕(BM)丝素蛋白由两个不同的亚基组成:重链丝素蛋白和轻链丝素蛋白,它们通过共价二硫键相连。目前分离这两种丝组分的方法很复杂,并且所获得的分离组分数量不足以用于研究单个轻链丝和重链丝在新材料方面的特性。我们报道了一种使用甲酸分离丝组分的简单方法。甲酸处理主要部分释放出轻链片段(可溶部分),然后可溶部分和不溶部分都可以转化为新材料。再生的原始(总)丝素蛋白以及分离出的组分(可溶与不可溶)具有不同的分子量,并且基于颗粒带电情况,在抗聚集/沉淀方面表现出独特的pH稳定性。所有丝组分都可以进行静电纺丝以得到纤维毡,再生组分的粘度是成功进行静电纺丝的控制因素。丝组分可以混合以得到两种组分比例不同的共混物,从而改变所形成的静电纺丝纤维的直径和均匀性。含有轻链的可溶部分能够通过使含有重链片段的不溶部分变稀来改变粘度,这可能类似于其在天然纤维形成中的作用,即轻链提供增加的流动性,而重链产生剪切增稠效应。这种新分离方法的简单性应能使人们获取这些不同的丝蛋白组分,并加速对这些材料在生物医学和工业应用中的方法、改性及潜在应用的鉴定。

相似文献

1
Functional material features of Bombyx mori silk light versus heavy chain proteins.
Biomacromolecules. 2015 Feb 9;16(2):606-14. doi: 10.1021/bm501667j. Epub 2015 Jan 20.
3
Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH.
Int J Biol Macromol. 2007 Oct 1;41(4):469-74. doi: 10.1016/j.ijbiomac.2007.06.006. Epub 2007 Jun 22.
4
Electrospinning Bombyx mori silk with poly(ethylene oxide).
Biomacromolecules. 2002 Nov-Dec;3(6):1233-9. doi: 10.1021/bm025581u.
6
Effects of different Bombyx mori silkworm varieties on the structural characteristics and properties of silk.
Int J Biol Macromol. 2015 Aug;79:943-51. doi: 10.1016/j.ijbiomac.2015.06.012. Epub 2015 Jun 11.
7
Rheology and electrospinning of regenerated bombyx mori silk fibroin aqueous solutions.
Biomacromolecules. 2014 Apr 14;15(4):1288-98. doi: 10.1021/bm4018319. Epub 2014 Mar 24.
9
Structural study of irregular amino acid sequences in the heavy chain of Bombyx mori silk fibroin.
Biomacromolecules. 2005 Sep-Oct;6(5):2563-9. doi: 10.1021/bm050294m.
10
Bioengineered silk proteins to control cell and tissue functions.
Methods Mol Biol. 2013;996:19-41. doi: 10.1007/978-1-62703-354-1_2.

引用本文的文献

1
Exploring the functional properties of silk fibers as a natural biopolymer for biomaterial applications.
Mater Today Commun. 2025 Jan;42. doi: 10.1016/j.mtcomm.2024.111416. Epub 2024 Dec 24.
2
Silk Fibroin Methacrylation: Chemical Synthesis to Biomechanical Optimization in Tissue Engineering.
ACS Biomater Sci Eng. 2025 Jun 9;11(6):3114-3125. doi: 10.1021/acsbiomaterials.4c01931. Epub 2025 May 9.
4
Elasticity Anisotropy of Silkworm Silk Fiber by Brillouin Light Spectroscopy.
Biomacromolecules. 2025 Apr 14;26(4):2479-2486. doi: 10.1021/acs.biomac.4c01844. Epub 2025 Apr 1.
5
Simple and Green Process for Silk Fibroin Production by Water Degumming.
ACS Omega. 2025 Jan 3;10(1):272-280. doi: 10.1021/acsomega.4c05531. eCollection 2025 Jan 14.
6
Fine Structural Analysis of Degummed Fibroin Fibers Reveals Its Superior Mechanical Capabilities.
ChemSusChem. 2025 Jan 2;18(1):e202401148. doi: 10.1002/cssc.202401148. Epub 2024 Sep 25.
7
Regenerated Fiber's Ideal Target: Comparable to Natural Fiber.
Materials (Basel). 2024 Apr 16;17(8):1834. doi: 10.3390/ma17081834.
8
Microcompartmentalization Controls Silk Feedstock Rheology.
Langmuir. 2023 Jul 4;39(26):8984-8995. doi: 10.1021/acs.langmuir.3c00354. Epub 2023 Jun 21.
9
Biomedical applications of silk and its role for intervertebral disc repair.
JOR Spine. 2022 Oct 6;5(4):e1225. doi: 10.1002/jsp2.1225. eCollection 2022 Dec.

本文引用的文献

1
Effect of processing on silk-based biomaterials: reproducibility and biocompatibility.
J Biomed Mater Res B Appl Biomater. 2011 Oct;99(1):89-101. doi: 10.1002/jbm.b.31875. Epub 2011 Jun 21.
2
New opportunities for an ancient material.
Science. 2010 Jul 30;329(5991):528-31. doi: 10.1126/science.1188936.
3
Different properties of electrospun fibrous scaffolds of separated heavy-chain and light-chain fibroins of Bombyx mori.
Int J Biol Macromol. 2010 Jun;46(5):493-501. doi: 10.1016/j.ijbiomac.2010.03.007. Epub 2010 Mar 23.
4
Silk-based delivery systems of bioactive molecules.
Adv Drug Deliv Rev. 2010 Dec 30;62(15):1497-508. doi: 10.1016/j.addr.2010.03.009. Epub 2010 Mar 16.
5
Silk fibroin spheres as a platform for controlled drug delivery.
J Control Release. 2008 Nov 24;132(1):26-34. doi: 10.1016/j.jconrel.2008.08.005. Epub 2008 Aug 19.
6
Silkworm and spider silk scaffolds for chondrocyte support.
J Mater Sci Mater Med. 2008 Nov;19(11):3399-409. doi: 10.1007/s10856-008-3474-6. Epub 2008 Jun 11.
7
In vivo degradation of three-dimensional silk fibroin scaffolds.
Biomaterials. 2008 Aug-Sep;29(24-25):3415-28. doi: 10.1016/j.biomaterials.2008.05.002. Epub 2008 May 27.
8
Assembly mechanism of recombinant spider silk proteins.
Proc Natl Acad Sci U S A. 2008 May 6;105(18):6590-5. doi: 10.1073/pnas.0709246105. Epub 2008 Apr 29.
9
Bone tissue engineering with premineralized silk scaffolds.
Bone. 2008 Jun;42(6):1226-34. doi: 10.1016/j.bone.2008.02.007. Epub 2008 Mar 4.
10
A new method for the modification of fibroin heavy chain protein in the transgenic silkworm.
Biosci Biotechnol Biochem. 2007 Dec;71(12):2943-51. doi: 10.1271/bbb.70353. Epub 2007 Dec 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验