Suppr超能文献

硬珊瑚中沿海和近海珊瑚礁之间的遗传多样性和差异取决于地理间断和洋流。

Genetic diversity and divergence among coastal and offshore reefs in a hard coral depend on geographic discontinuity and oceanic currents.

作者信息

Underwood Jim N

机构信息

School of Animal Biology, University of Western Australia, and the Australian Institute of Marine Science Crawley, WA, Australia.

出版信息

Evol Appl. 2009 May;2(2):222-33. doi: 10.1111/j.1752-4571.2008.00065.x. Epub 2009 Feb 2.

Abstract

Understanding the evolutionary processes that have shaped existing patterns of genetic diversity of reef-building corals over broad scales is required to inform long-term conservation planning. Genetic structure and diversity of the mass-spawning hard coral, Acropora tenuis, were assessed with seven DNA microsatellite loci from a series of isolated and discontinuous coastal and offshore reef systems in northwest Australia. Significant subdivision was detected among all sites (F ST = 0.062, R ST = 0.090), with the majority of this variation due to genetic differentiation among reef systems. In addition, genetic divergence was detected between the coastal and offshore zones that cannot be adequately explained by geographic distance, indicating that transport of larvae between these zones via large-scale oceanic currents is rare even over time frames that account for connectivity over multiple generations. Significant differences in the amount of genetic diversity at each system were also detected, with higher diversity observed on the lower latitude reefs. The implications are that these reef systems of northwest Australia are not only demographically independent, but that they will also have to rely on their own genetic diversity to adapt to environmental change over the next few decades to centuries.

摘要

为了为长期保护规划提供信息,需要了解在大尺度上塑造造礁珊瑚现有遗传多样性模式的进化过程。利用七个DNA微卫星位点,对澳大利亚西北部一系列孤立且不连续的沿海和近海珊瑚礁系统中的大量产卵硬珊瑚细枝鹿角珊瑚(Acropora tenuis)的遗传结构和多样性进行了评估。在所有位点之间检测到显著的细分(F ST = 0.062,R ST = 0.090),其中大部分变异是由于珊瑚礁系统之间的遗传分化。此外,在沿海和近海区域之间检测到遗传分歧,这无法用地理距离充分解释,这表明即使在考虑多代连通性的时间框架内,通过大规模洋流在这些区域之间运输幼虫的情况也很少见。还检测到每个系统的遗传多样性数量存在显著差异,在低纬度珊瑚礁上观察到更高的多样性。这意味着澳大利亚西北部的这些珊瑚礁系统不仅在人口统计学上是独立的,而且在未来几十年到几个世纪里,它们还将不得不依靠自身的遗传多样性来适应环境变化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4ab4/3352373/2e2ab0edd7b5/eva0002-0222-f1.jpg

相似文献

2
Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.
Mol Ecol. 2016 Jul;25(13):3065-80. doi: 10.1111/mec.13649. Epub 2016 May 15.
3
Genetic signatures through space, time and multiple disturbances in a ubiquitous brooding coral.
Mol Ecol. 2018 Apr;27(7):1586-1602. doi: 10.1111/mec.14559. Epub 2018 Apr 17.
4
Coral reproduction in Western Australia.
PeerJ. 2016 May 18;4:e2010. doi: 10.7717/peerj.2010. eCollection 2016.
6
Cryptic diversity and spatial genetic variation in the coral and its endosymbionts across the Great Barrier Reef.
Evol Appl. 2022 Jul 7;16(2):293-310. doi: 10.1111/eva.13435. eCollection 2023 Feb.
7
9
Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia.
Evolution. 2000 Oct;54(5):1590-605. doi: 10.1111/j.0014-3820.2000.tb00704.x.
10
Isolation by resistance across a complex coral reef seascape.
Proc Biol Sci. 2015 Aug 7;282(1812):20151217. doi: 10.1098/rspb.2015.1217.

引用本文的文献

1
Environmental Drivers of Genetic Divergence in Two Corals From the Florida Keys.
Evol Appl. 2025 Jun 29;18(7):e70126. doi: 10.1111/eva.70126. eCollection 2025 Jul.
2
Resilience to periodic disturbances and the long-term genetic stability in Acropora coral.
Commun Biol. 2024 Apr 4;7(1):410. doi: 10.1038/s42003-024-06100-0.
5
Cryptic diversity and spatial genetic variation in the coral and its endosymbionts across the Great Barrier Reef.
Evol Appl. 2022 Jul 7;16(2):293-310. doi: 10.1111/eva.13435. eCollection 2023 Feb.
6
Population connectivity and genetic offset in the spawning coral Acropora digitifera in Western Australia.
Mol Ecol. 2022 Jul;31(13):3533-3547. doi: 10.1111/mec.16498. Epub 2022 Jun 5.
7
8
Development of a transcriptomic database for 14 species of scleractinian corals.
BMC Genomics. 2019 May 17;20(1):387. doi: 10.1186/s12864-019-5744-8.
9
Unexpectedly complex gradation of coral population structure in the Nansei Islands, Japan.
Ecol Evol. 2016 Jul 12;6(15):5491-505. doi: 10.1002/ece3.2296. eCollection 2016 Aug.
10
Biannual Spawning and Temporal Reproductive Isolation in Acropora Corals.
PLoS One. 2016 Mar 10;11(3):e0150916. doi: 10.1371/journal.pone.0150916. eCollection 2016.

本文引用的文献

1
EVIDENCE FOR RESTRICTED GENE FLOW IN THE VIVIPAROUS CORAL SERIATOPORA HYSTRIX ON AUSTRALIA'S GREAT BARRIER REEF.
Evolution. 1994 Aug;48(4):1183-1201. doi: 10.1111/j.1558-5646.1994.tb05304.x.
2
GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research--an update.
Bioinformatics. 2012 Oct 1;28(19):2537-9. doi: 10.1093/bioinformatics/bts460. Epub 2012 Jul 20.
4
Protection of genetic diversity and maintenance of connectivity among reef corals within marine protected areas.
Conserv Biol. 2008 Oct;22(5):1245-54. doi: 10.1111/j.1523-1739.2008.00985.x. Epub 2008 Jul 15.
5
Mitochondrial DNA under siege in avian phylogeography.
Mol Ecol. 2008 May;17(9):2107-21. doi: 10.1111/j.1365-294X.2008.03737.x. Epub 2008 Apr 3.
7
Conservation genetics and the resilience of reef-building corals.
Mol Ecol. 2006 Nov;15(13):3863-83. doi: 10.1111/j.1365-294X.2006.03026.x.
8
Ecosystem recovery after climatic extremes enhanced by genotypic diversity.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):2826-31. doi: 10.1073/pnas.0500008102. Epub 2005 Feb 14.
9
How to track and assess genotyping errors in population genetics studies.
Mol Ecol. 2004 Nov;13(11):3261-73. doi: 10.1111/j.1365-294X.2004.02346.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验