Suppr超能文献

极端海景驱动澳大利亚西北部偏远地区的抱卵和产卵珊瑚的本地补充和遗传分化。

Extreme seascape drives local recruitment and genetic divergence in brooding and spawning corals in remote north-west Australia.

作者信息

Underwood Jim N, Richards Zoe, Berry Oliver, Oades Daniel, Howard Azton, Gilmour James P

机构信息

Australian Institute of Marine Science Indian Oceans Marine Research Centre, Crawley Perth WA Australia.

Western Australian Marine Science Institution Indian Ocean Marine Research Centre Crawley WA Australia.

出版信息

Evol Appl. 2020 Jun 22;13(9):2404-2421. doi: 10.1111/eva.13033. eCollection 2020 Oct.

Abstract

Management strategies designed to conserve coral reefs threatened by climate change need to incorporate knowledge of the spatial distribution of inter- and intra-specific genetic diversity. We characterized patterns of genetic diversity and connectivity using single nucleotide polymorphisms (SNPs) in two reef-building corals to explore the eco-evolutionary processes that sustain populations in north-west Australia. Our sampling focused on the unique reefs of the Kimberley; we collected the broadcast spawning coral ( = 534) and the brooding coral ( = 612) across inter-archipelago (tens to hundreds of kilometres), inter-reef (kilometres to tens of kilometres) and within-reef (tens of metres to a few kilometres) scales. Initial analysis of identified four highly divergent lineages that were co-occurring but morphologically similar. Subsequent population analyses focused on the most abundant and widespread lineage, asp-c. Although the overall level of geographic subdivision was greater in the brooder than in the spawner, fundamental similarities in patterns of genetic structure were evident. Most notably, limits to gene flow were observed at scales <35 kilometres. Further, we observed four discrete clusters and a semi-permeable barrier to dispersal that were geographically consistent between species. Finally, sites experiencing bigger tides were more connected to the metapopulation and had greater gene diversity than those experiencing smaller tides. Our data indicate that the inshore reefs of the Kimberley are genetically isolated from neighbouring oceanic bioregions, but occasional dispersal between inshore archipelagos is important for the redistribution of evolutionarily important genetic diversity. Additionally, these results suggest that networks of marine reserves that effectively protect reefs from local pressures should be spaced within a few tens of kilometres to conserve the existing patterns of demographic and genetic connectivity.

摘要

旨在保护受气候变化威胁的珊瑚礁的管理策略需要纳入种间和种内遗传多样性空间分布的知识。我们利用两种造礁珊瑚中的单核苷酸多态性(SNP)来表征遗传多样性和连通性模式,以探索维持澳大利亚西北部种群的生态进化过程。我们的采样集中在金伯利独特的珊瑚礁;我们在群岛间(数十至数百公里)、礁间(公里至数十公里)和礁内(数十米至几公里)尺度上采集了散播产卵珊瑚( = 534)和 brooding 珊瑚( = 612)。对 的初步分析确定了四个同时出现但形态相似的高度分化谱系。随后的种群分析集中在最丰富和分布最广的谱系 asp-c 上。尽管 brooder 的地理细分总体水平高于产卵者,但遗传结构模式的基本相似性很明显。最值得注意的是,在小于35公里的尺度上观察到了基因流动的限制。此外,我们观察到四个离散的聚类和一个地理上物种间一致的半透性扩散屏障。最后,潮汐较大的地点与集合种群的联系更紧密,基因多样性也比潮汐较小的地点更大。我们的数据表明,金伯利的近岸珊瑚礁在基因上与邻近的海洋生物区域隔离,但近岸群岛之间偶尔的扩散对于重要进化遗传多样性的重新分布很重要。此外,这些结果表明,有效保护珊瑚礁免受当地压力的海洋保护区网络应间隔在几十公里以内,以保护现有的种群和遗传连通性模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4300/7513722/27cc78bd5c6e/EVA-13-2404-g001.jpg

相似文献

1
2
Coral reproduction in Western Australia.
PeerJ. 2016 May 18;4:e2010. doi: 10.7717/peerj.2010. eCollection 2016.
3
Congruent patterns of connectivity can inform management for broadcast spawning corals on the Great Barrier Reef.
Mol Ecol. 2016 Jul;25(13):3065-80. doi: 10.1111/mec.13649. Epub 2016 May 15.
4
Genotypic diversity and gene flow in brooding and spawning corals along the Great Barrier Reef, Australia.
Evolution. 2000 Oct;54(5):1590-605. doi: 10.1111/j.0014-3820.2000.tb00704.x.
5
Population connectivity and genetic offset in the spawning coral Acropora digitifera in Western Australia.
Mol Ecol. 2022 Jul;31(13):3533-3547. doi: 10.1111/mec.16498. Epub 2022 Jun 5.
7
Genetic signatures through space, time and multiple disturbances in a ubiquitous brooding coral.
Mol Ecol. 2018 Apr;27(7):1586-1602. doi: 10.1111/mec.14559. Epub 2018 Apr 17.
8
Larval dispersal and movement patterns of coral reef fishes, and implications for marine reserve network design.
Biol Rev Camb Philos Soc. 2015 Nov;90(4):1215-47. doi: 10.1111/brv.12155. Epub 2014 Nov 25.
9
Isolation by resistance across a complex coral reef seascape.
Proc Biol Sci. 2015 Aug 7;282(1812):20151217. doi: 10.1098/rspb.2015.1217.

引用本文的文献

2
Environmental Drivers of Genetic Divergence in Two Corals From the Florida Keys.
Evol Appl. 2025 Jun 29;18(7):e70126. doi: 10.1111/eva.70126. eCollection 2025 Jul.
4
Exploring coral speciation: Multiple sympatric taxa along a divergence continuum on the Great Barrier Reef.
Evol Appl. 2024 Jan 26;17(1):e13644. doi: 10.1111/eva.13644. eCollection 2024 Jan.
7
Cryptic diversity and spatial genetic variation in the coral and its endosymbionts across the Great Barrier Reef.
Evol Appl. 2022 Jul 7;16(2):293-310. doi: 10.1111/eva.13435. eCollection 2023 Feb.
9
Genetic patterns in Montipora capitata across an environmental mosaic in Kāne'ohe Bay, O'ahu, Hawai'i.
Mol Ecol. 2022 Oct;31(20):5201-5213. doi: 10.1111/mec.16655. Epub 2022 Sep 7.
10
Population connectivity and genetic offset in the spawning coral Acropora digitifera in Western Australia.
Mol Ecol. 2022 Jul;31(13):3533-3547. doi: 10.1111/mec.16498. Epub 2022 Jun 5.

本文引用的文献

1
Changing role of coral reef marine reserves in a warming climate.
Nat Commun. 2020 Apr 24;11(1):2000. doi: 10.1038/s41467-020-15863-z.
3
The active spread of adaptive variation for reef resilience.
Ecol Evol. 2019 Sep 2;9(19):11122-11135. doi: 10.1002/ece3.5616. eCollection 2019 Oct.
4
Biodiversity enhances coral growth, tissue survivorship and suppression of macroalgae.
Nat Ecol Evol. 2019 Feb;3(2):178-182. doi: 10.1038/s41559-018-0752-7. Epub 2019 Jan 7.
5
Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral.
PLoS Genet. 2018 Apr 19;14(4):e1007220. doi: 10.1371/journal.pgen.1007220. eCollection 2018 Apr.
6
Genetic signatures through space, time and multiple disturbances in a ubiquitous brooding coral.
Mol Ecol. 2018 Apr;27(7):1586-1602. doi: 10.1111/mec.14559. Epub 2018 Apr 17.
7
Navigating the currents of seascape genomics: how spatial analyses can augment population genomic studies.
Curr Zool. 2016 Dec;62(6):581-601. doi: 10.1093/cz/zow067. Epub 2016 Jul 6.
8
Cryptic species as a window into the paradigm shift of the species concept.
Mol Ecol. 2018 Feb;27(3):613-635. doi: 10.1111/mec.14486. Epub 2018 Feb 16.
9
Spatial and temporal patterns of mass bleaching of corals in the Anthropocene.
Science. 2018 Jan 5;359(6371):80-83. doi: 10.1126/science.aan8048.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验