Schertel Claus, Albarca Monica, Rockel-Bauer Claudia, Kelley Nicholas W, Bischof Johannes, Hens Korneel, van Nimwegen Erik, Basler Konrad, Deplancke Bart
Institute of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland;
Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland;
Genome Res. 2015 Apr;25(4):514-23. doi: 10.1101/gr.181305.114. Epub 2015 Jan 7.
Transcription factors (TFs) are key regulators of cell fate. The estimated 755 genes that encode DNA binding domain-containing proteins comprise ∼ 5% of all Drosophila genes. However, the majority has remained uncharacterized so far due to the lack of proper genetic tools. We generated 594 site-directed transgenic Drosophila lines that contain integrations of individual UAS-TF constructs to facilitate spatiotemporally controlled misexpression in vivo. All transgenes were expressed in the developing wing, and two-thirds induced specific phenotypic defects. In vivo knockdown of the same genes yielded a phenotype for 50%, with both methods indicating a great potential for misexpression to characterize novel functions in wing growth, patterning, and development. Thus, our UAS-TF library provides an important addition to the genetic toolbox of Drosophila research, enabling the identification of several novel wing development-related TFs. In parallel, we established the chromatin landscape of wing imaginal discs by ChIP-seq analyses of five chromatin marks and RNA Pol II. Subsequent clustering revealed six distinct chromatin states, with two clusters showing enrichment for both active and repressive marks. TFs that carry such "bivalent" chromatin are highly enriched for causing misexpression phenotypes in the wing, and analysis of existing expression data shows that these TFs tend to be differentially expressed across the wing disc. Thus, bivalently marked chromatin can be used as a marker for spatially regulated TFs that are functionally relevant in a developing tissue.
转录因子(TFs)是细胞命运的关键调节因子。估计有755个编码含DNA结合结构域蛋白的基因,约占所有果蝇基因的5%。然而,由于缺乏合适的遗传工具,到目前为止,大多数基因仍未得到表征。我们构建了594个位点定向转基因果蝇品系,这些品系包含单个UAS-TF构建体的整合,以促进体内时空控制的错误表达。所有转基因都在发育中的翅膀中表达,三分之二的转基因诱导了特定的表型缺陷。对相同基因进行体内敲低,50%产生了表型,这两种方法都表明错误表达在表征翅膀生长、图案形成和发育中的新功能方面具有巨大潜力。因此,我们的UAS-TF文库为果蝇研究的遗传工具箱增添了重要内容,有助于鉴定几种与翅膀发育相关的新转录因子。同时,我们通过对五种染色质标记和RNA聚合酶II进行ChIP-seq分析,建立了翅芽的染色质图谱。随后的聚类揭示了六种不同的染色质状态,其中两个聚类显示出激活和抑制标记均富集。携带这种“双价”染色质的转录因子在翅膀中导致错误表达表型的情况高度富集,对现有表达数据的分析表明,这些转录因子在整个翅盘中往往存在差异表达。因此,双价标记的染色质可作为在发育组织中具有功能相关性的空间调节转录因子的标志物。