Suppr超能文献

在体内,与AGO蛋白结合的微小RNA主要存在于与mRNA不相关的低分子量复合物池中。

In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA.

作者信息

La Rocca Gaspare, Olejniczak Scott H, González Alvaro J, Briskin Daniel, Vidigal Joana A, Spraggon Lee, DeMatteo Raymond G, Radler Megan R, Lindsten Tullia, Ventura Andrea, Tuschl Thomas, Leslie Christina S, Thompson Craig B

机构信息

Cancer Biology and Genetics Program.

Computational Biology Program, and.

出版信息

Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):767-72. doi: 10.1073/pnas.1424217112. Epub 2015 Jan 7.

Abstract

MicroRNAs repress mRNA translation by guiding Argonaute proteins to partially complementary binding sites, primarily within the 3' untranslated region (UTR) of target mRNAs. In cell lines, Argonaute-bound microRNAs exist mainly in high molecular weight RNA-induced silencing complexes (HMW-RISC) associated with target mRNA. Here we demonstrate that most adult tissues contain reservoirs of microRNAs in low molecular weight RISC (LMW-RISC) not bound to mRNA, suggesting that these microRNAs are not actively engaged in target repression. Consistent with this observation, the majority of individual microRNAs in primary T cells were enriched in LMW-RISC. During T-cell activation, signal transduction through the phosphoinositide-3 kinase-RAC-alpha serine/threonine-protein kinase-mechanistic target of rapamycin pathway increased the assembly of microRNAs into HMW-RISC, enhanced expression of the glycine-tryptophan protein of 182 kDa, an essential component of HMW-RISC, and improved the ability of microRNAs to repress partially complementary reporters, even when expression of targeting microRNAs did not increase. Overall, data presented here demonstrate that microRNA-mediated target repression in nontransformed cells depends not only on abundance of specific microRNAs, but also on regulation of RISC assembly by intracellular signaling.

摘要

微小RNA通过引导AGO蛋白至主要位于靶mRNA的3'非翻译区(UTR)内的部分互补结合位点来抑制mRNA翻译。在细胞系中,与AGO蛋白结合的微小RNA主要存在于与靶mRNA相关的高分子量RNA诱导沉默复合体(HMW-RISC)中。在此,我们证明大多数成体组织中存在未与mRNA结合的低分子量RISC(LMW-RISC)形式的微小RNA储存库,这表明这些微小RNA未积极参与靶标抑制。与该观察结果一致,原代T细胞中大多数单个微小RNA在LMW-RISC中富集。在T细胞活化过程中,通过磷酸肌醇-3激酶-RAC-α丝氨酸/苏氨酸蛋白激酶-雷帕霉素作用机制靶点途径的信号转导增加了微小RNA组装进入HMW-RISC,增强了HMW-RISC的必需成分——182 kDa甘氨酸-色氨酸蛋白的表达,并提高了微小RNA抑制部分互补报告基因的能力,即使靶向微小RNA的表达未增加。总体而言,本文提供的数据表明,未转化细胞中微小RNA介导的靶标抑制不仅取决于特定微小RNA的丰度,还取决于细胞内信号传导对RISC组装的调控。

相似文献

1
In vivo, Argonaute-bound microRNAs exist predominantly in a reservoir of low molecular weight complexes not associated with mRNA.
Proc Natl Acad Sci U S A. 2015 Jan 20;112(3):767-72. doi: 10.1073/pnas.1424217112. Epub 2015 Jan 7.
3
In Vitro Analysis of ARGONAUTE-Mediated Target Cleavage and Translational Repression in Plants.
Methods Mol Biol. 2017;1640:55-71. doi: 10.1007/978-1-4939-7165-7_4.
4
RIP-Chip analysis supports different roles for AGO2 and GW182 proteins in recruiting and processing microRNA targets.
BMC Bioinformatics. 2019 Apr 18;20(Suppl 4):120. doi: 10.1186/s12859-019-2683-y.
5
Molecular insights into microRNA-mediated translational repression in plants.
Mol Cell. 2013 Nov 21;52(4):591-601. doi: 10.1016/j.molcel.2013.10.033.
6
The Role of Tertiary Structure in MicroRNA Target Recognition.
Methods Mol Biol. 2019;1970:43-64. doi: 10.1007/978-1-4939-9207-2_4.
7
MicroRNAs mediate gene silencing via multiple different pathways in drosophila.
Mol Cell. 2012 Dec 28;48(6):825-36. doi: 10.1016/j.molcel.2012.09.024. Epub 2012 Nov 1.
8
NF90 interacts with components of RISC and modulates association of Ago2 with mRNA.
BMC Biol. 2022 Sep 1;20(1):194. doi: 10.1186/s12915-022-01384-2.
9
Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing .
EMBO J. 2017 Jul 14;36(14):2088-2106. doi: 10.15252/embj.201696386. Epub 2017 Jun 23.

引用本文的文献

1
C-terminal tagging impairs AGO2 function.
RNA Biol. 2025 Dec;22(1):1-24. doi: 10.1080/15476286.2025.2534028. Epub 2025 Jul 23.
2
CD28 co-stimulation: novel insights and applications in cancer immunotherapy.
Nat Rev Immunol. 2024 Dec;24(12):878-895. doi: 10.1038/s41577-024-01061-1. Epub 2024 Jul 25.
3
Intracellular localisation and extracellular release of Y RNA and Y RNA binding proteins.
J Extracell Biol. 2024 Jan 16;3(1):e123. doi: 10.1002/jex2.123. eCollection 2024 Jan.
5
RNAi-based drug design: considerations and future directions.
Nat Rev Drug Discov. 2024 May;23(5):341-364. doi: 10.1038/s41573-024-00912-9. Epub 2024 Apr 3.
6
Nuclear localization of Argonaute 2 is affected by cell density and may relieve repression by microRNAs.
Nucleic Acids Res. 2024 Feb 28;52(4):1930-1952. doi: 10.1093/nar/gkad1155.
7
AGO2 localizes to the nucleus in quiescence and represses transposon expression.
Nat Struct Mol Biol. 2023 Dec;30(12):1838-1839. doi: 10.1038/s41594-023-01169-3.
8
AGO2 silences mobile transposons in the nucleus of quiescent cells.
Nat Struct Mol Biol. 2023 Dec;30(12):1985-1995. doi: 10.1038/s41594-023-01151-z. Epub 2023 Nov 20.
10
The roles of miRNAs in adult skeletal muscle satellite cells.
Free Radic Biol Med. 2023 Nov 20;209(Pt 2):228-238. doi: 10.1016/j.freeradbiomed.2023.10.403. Epub 2023 Oct 24.

本文引用的文献

1
mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues.
Mol Cell. 2014 Oct 2;56(1):104-15. doi: 10.1016/j.molcel.2014.08.028. Epub 2014 Sep 25.
2
A-to-I editing in the miRNA seed region regulates target mRNA selection and silencing efficiency.
Nucleic Acids Res. 2014 Sep;42(15):10050-60. doi: 10.1093/nar/gku662. Epub 2014 Jul 23.
3
Biochemistry. A bacterial seek-and-destroy system for foreign DNA.
Science. 2014 May 30;344(6187):972-3. doi: 10.1126/science.1252962.
4
The RNA-binding protein TDP-43 selectively disrupts microRNA-1/206 incorporation into the RNA-induced silencing complex.
J Biol Chem. 2014 May 16;289(20):14263-71. doi: 10.1074/jbc.M114.561902. Epub 2014 Apr 9.
5
Loss of mTOR complex 1 induces developmental blockage in early T-lymphopoiesis and eradicates T-cell acute lymphoblastic leukemia cells.
Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3805-10. doi: 10.1073/pnas.1320265111. Epub 2014 Feb 24.
6
Landscape and variation of RNA secondary structure across the human transcriptome.
Nature. 2014 Jan 30;505(7485):706-9. doi: 10.1038/nature12946.
7
Competition and collaboration between RNA-binding proteins and microRNAs.
Wiley Interdiscip Rev RNA. 2014 Jan-Feb;5(1):69-86. doi: 10.1002/wrna.1197. Epub 2013 Oct 7.
8
Functionally diverse microRNA effector complexes are regulated by extracellular signaling.
Mol Cell. 2013 Oct 10;52(1):113-23. doi: 10.1016/j.molcel.2013.08.023. Epub 2013 Sep 19.
9
miRNA profiling of cancer.
Curr Opin Genet Dev. 2013 Feb;23(1):3-11. doi: 10.1016/j.gde.2013.01.004. Epub 2013 Mar 4.
10
GW182 proteins cause PABP dissociation from silenced miRNA targets in the absence of deadenylation.
EMBO J. 2013 Apr 3;32(7):1052-65. doi: 10.1038/emboj.2013.44. Epub 2013 Mar 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验