Piao Hong Hua, Rajakumar Dhanarajan, Kang Bok Eum, Kim Eun Ha, Baker Bradley J
Center for Functional Connectomics, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 136-791, Republic of Korea.
Center for Functional Connectomics, Korea Institute of Science and Technology, Seongbuk-gu, Seoul, 136-791, Republic of Korea
J Neurosci. 2015 Jan 7;35(1):372-85. doi: 10.1523/JNEUROSCI.3008-14.2015.
ArcLight is a genetically encoded fluorescent voltage sensor using the voltage-sensing domain of the voltage-sensing phosphatase from Ciona intestinalis that gives a large but slow-responding optical signal in response to changes in membrane potential (Jin et al., 2012). Fluorescent voltage sensors using the voltage-sensing domain from other species give faster yet weaker optical signals (Baker et al., 2012; Han et al., 2013). Sequence alignment of voltage-sensing phosphatases from different species revealed conserved polar and charged residues at 7 aa intervals in the S1-S3 transmembrane segments of the voltage-sensing domain, suggesting potential coil-coil interactions. The contribution of these residues to the voltage-induced optical signal was tested using a cassette mutagenesis screen by flanking each transmembrane segment with unique restriction sites to allow for the testing of individual mutations in each transmembrane segment, as well as combinations in all four transmembrane segments. Addition of a counter charge in S2 improved the kinetics of the optical response. A double mutation in the S4 domain dramatically reduced the slow component of the optical signal seen in ArcLight. Combining that double S4 mutant with the mutation in the S2 domain yielded a probe with kinetics <10 ms. Optimization of the linker sequence between S4 and the fluorescent protein resulted in a new ArcLight-derived probe, Bongwoori, capable of resolving action potentials in a hippocampal neuron firing at 60 Hz. Additional manipulation of the voltage-sensing domain could potentially lead to fluorescent sensors capable of optically resolving neuronal inhibition and subthreshold synaptic activity.
ArcLight是一种基因编码的荧光电压传感器,它利用来自玻璃海鞘的电压感应磷酸酶的电压感应结构域,在膜电位变化时产生大但响应缓慢的光学信号(Jin等人,2012年)。使用来自其他物种的电压感应结构域的荧光电压传感器产生的光学信号更快但更弱(Baker等人,2012年;Han等人,2013年)。不同物种电压感应磷酸酶的序列比对显示,在电压感应结构域的S1 - S3跨膜片段中,每隔7个氨基酸就有保守的极性和带电荷残基,这表明存在潜在的卷曲螺旋相互作用。通过盒式诱变筛选测试了这些残基对电压诱导光学信号的贡献,方法是在每个跨膜片段两侧设置独特的限制性位点,以便测试每个跨膜片段中的单个突变以及所有四个跨膜片段中的组合突变。在S2中添加一个反电荷改善了光学响应的动力学。S4结构域中的双突变显著降低了ArcLight中可见的光学信号的慢成分。将该双S4突变体与S2结构域中的突变相结合,产生了一种动力学<10毫秒的探针。优化S4与荧光蛋白之间的接头序列,得到了一种新的源自ArcLight的探针Bongwoori,它能够解析以60 Hz频率放电的海马神经元中的动作电位。对电压感应结构域的进一步操作可能会产生能够光学解析神经元抑制和阈下突触活动的荧光传感器。