Suppr超能文献

利用无监督多元技术对重金属污染沉积物进行表征及健康风险评估。

Characterization of heavy-metal-contaminated sediment by using unsupervised multivariate techniques and health risk assessment.

作者信息

Wang Yeuh-Bin, Liu Chen-Wuing, Wang Sheng-Wei

机构信息

Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan; Department of Environmental Monitoring and Information Management, Environmental Protection Administration, Taipei, Taiwan.

Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan.

出版信息

Ecotoxicol Environ Saf. 2015 Mar;113:469-76. doi: 10.1016/j.ecoenv.2014.12.036. Epub 2015 Jan 5.

Abstract

This study characterized the sediment quality of the severely contaminated Erjen River in Taiwan by using multivariate analysis methods-including factor analysis (FA), self-organizing maps (SOMs), and positive matrix factorization (PMF)-and health risk assessment. The SOMs classified the dataset with similar heavy-metal-contaminated sediment into five groups. FA extracted three major factors-traditional electroplating and metal-surface processing factor, nontraditional heavy-metal-industry factor, and natural geological factor-which accounted for 80.8% of the variance. The SOMs and FA revealed the heavy-metal-contaminated-sediment hotspots in the middle and upper reaches of the major tributary in the dry season. The hazardous index value for health risk via ingestion was 0.302. PMF further qualified the source apportionment, indicating that traditional electroplating and metal-surface-processing industries comprised 47% of the health risk posed by heavy-metal-contaminated sediment. Contaminants discharged from traditional electroplating and metal-surface-processing industries in the middle and upper reaches of the major tributary must be eliminated first to improve the sediment quality in Erjen River. The proposed assessment framework for heavy-metal-contaminated sediment can be applied to contaminated-sediment river sites in other regions.

摘要

本研究运用多元分析方法(包括因子分析(FA)、自组织映射(SOM)和正定矩阵因子分解(PMF))以及健康风险评估,对台湾严重污染的二仁溪沉积物质量进行了表征。SOM将重金属污染程度相似的沉积物数据集分为五组。FA提取了三个主要因子——传统电镀和金属表面处理因子、非传统重金属工业因子以及自然地质因子,它们占方差的80.8%。SOM和FA揭示了旱季主要支流中上游的重金属污染沉积物热点区域。经口摄入的健康风险危害指数值为0.302。PMF进一步确定了源解析,表明传统电镀和金属表面处理行业占重金属污染沉积物所造成健康风险的47%。必须首先消除主要支流中上游传统电镀和金属表面处理行业排放的污染物,以改善二仁溪的沉积物质量。所提出的重金属污染沉积物评估框架可应用于其他地区受污染沉积物的河流站点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验