Suppr超能文献

使用与短期自相关的模板匹配进行抗噪声QRS检测。

Noise tolerant QRS detection using template matching with short-term autocorrelation.

作者信息

Nakai Yozaburo, Izumi Shintaro, Nakano Masanao, Yamashita Ken, Fujii Takahide, Kawaguchi Hiroshi, Yoshimoto Masahiko

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:34-7. doi: 10.1109/EMBC.2014.6943522.

Abstract

This paper describes a robust method for heart beat detection from noisy electrocardiogram (ECG) signals. Generally, the QRS-complex of heart beat is extracted from the ECG using a threshold. However, in a noisy condition such a mobile and wearable bio-signal monitoring system, noise increases the incidence of misdetection and false detection of QRS-complex. To prevent incorrect detection, we introduce a novel template matching algorithm. The template waveform can be generated autonomously using a short-term autocorrelation method, which leverages the similarity of QRS-complex waveforms. Simulation results show the proposed method achieves state-of-the-art noise tolerance of heart beat detection.

摘要

本文描述了一种从噪声心电图(ECG)信号中进行心跳检测的稳健方法。一般来说,心跳的QRS复合波是通过阈值从心电图中提取的。然而,在诸如移动和可穿戴生物信号监测系统这样的噪声环境中,噪声会增加QRS复合波误检测和假检测的发生率。为了防止错误检测,我们引入了一种新颖的模板匹配算法。模板波形可以使用短期自相关方法自主生成,该方法利用了QRS复合波波形的相似性。仿真结果表明,该方法实现了心跳检测的最新噪声容限。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验