Suppr超能文献

用于可穿戴医疗系统的基于短时自相关的瞬时心率检测

Instantaneous Heart Rate detection using short-time autocorrelation for wearable healthcare systems.

作者信息

Nakano Masanao, Konishi Toshihiro, Izumi Shintaro, Kawaguchi Hiroshi, Yoshimoto Masahiko

机构信息

Kobe University, 1-1-Rokkodai Nada Kobe Hyogo, Japan.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6703-6. doi: 10.1109/EMBC.2012.6347532.

Abstract

This report describes a robust method of Instantaneous Heart Rate (IHR) detection from noisy electrocardiogram (ECG) signals. Generally, the IHR is calculated from the interval of R-waves. Then, the R-waves are extracted from the ECG using a threshold. However, in wearable biosignal monitoring systems, various noises (e.g. muscle artifacts from myoelectric signals, electrode motion artifacts) increase incidences of misdetection and false detection because the power consumption and electrode distance of the wearable sensor are limited to reduce its size and weight. To prevent incorrect detection, we use a short-time autocorrelation technique. The proposed method uses similarity of the waveform of the QRS complex. Therefore, it has no threshold calculation Process and it is robust for noisy environment. Simulation results show that the proposed method improves the success rate of IHR detection by up to 37%.

摘要

本报告描述了一种从嘈杂的心电图(ECG)信号中检测瞬时心率(IHR)的强大方法。一般来说,IHR是根据R波的间隔来计算的。然后,使用阈值从ECG中提取R波。然而,在可穿戴生物信号监测系统中,由于可穿戴传感器的功耗和电极距离受到限制以减小其尺寸和重量,各种噪声(例如来自肌电信号的肌肉伪迹、电极运动伪迹)会增加误检测和假检测的发生率。为了防止错误检测,我们使用了短时自相关技术。所提出的方法利用了QRS复合波波形的相似性。因此,它没有阈值计算过程,并且在嘈杂环境中具有鲁棒性。仿真结果表明,所提出的方法将IHR检测的成功率提高了多达37%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验