Martínez-Vargas J D, Castaño-Candamil J S, Castellanos-Dominguez G
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:2789-92. doi: 10.1109/EMBC.2014.6944202.
Electroencephalographic (EEG) data give a direct non-invasive measurement of neural brain activity. Nevertheless, the common assumption about EEG stationarity (time-invariant process) is a strong limitation for understanding real behavior of underlying neural networks. Here, we propose an approach for finding networks of brain regions connected by functional associations (functional connectivity) that vary along the time. To this end, we compute a set of a priori spatial dictionaries that represent brain areas with similar temporal stochastic dynamics, and then, we model relationship between areas as a time-varying process. We test our approach in both simulated and real EEG data where results show that inherent interpretability provided by the time-varying process can be useful to describe underlying neural networks.
脑电图(EEG)数据提供了对大脑神经活动的直接无创测量。然而,关于EEG平稳性(时不变过程)的常见假设对理解潜在神经网络的真实行为是一个很大的限制。在此,我们提出一种方法,用于寻找由随时间变化的功能关联(功能连接)连接的脑区网络。为此,我们计算一组先验空间字典,这些字典代表具有相似时间随机动态的脑区,然后,我们将区域之间的关系建模为时变过程。我们在模拟和真实EEG数据中测试了我们的方法,结果表明时变过程提供的内在可解释性有助于描述潜在的神经网络。