文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多模态功能网络连接:网络空间中的 EEG-fMRI 融合。

Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

机构信息

The Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.

出版信息

PLoS One. 2011;6(9):e24642. doi: 10.1371/journal.pone.0024642. Epub 2011 Sep 22.


DOI:10.1371/journal.pone.0024642
PMID:21961040
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3178514/
Abstract

EEG and fMRI recordings measure the functional activity of multiple coherent networks distributed in the cerebral cortex. Identifying network interaction from the complementary neuroelectric and hemodynamic signals may help to explain the complex relationships between different brain regions. In this paper, multimodal functional network connectivity (mFNC) is proposed for the fusion of EEG and fMRI in network space. First, functional networks (FNs) are extracted using spatial independent component analysis (ICA) in each modality separately. Then the interactions among FNs in each modality are explored by Granger causality analysis (GCA). Finally, fMRI FNs are matched to EEG FNs in the spatial domain using network-based source imaging (NESOI). Investigations of both synthetic and real data demonstrate that mFNC has the potential to reveal the underlying neural networks of each modality separately and in their combination. With mFNC, comprehensive relationships among FNs might be unveiled for the deep exploration of neural activities and metabolic responses in a specific task or neurological state.

摘要

脑电图 (EEG) 和功能磁共振成像 (fMRI) 记录测量了分布在大脑皮层中的多个相干网络的功能活动。从互补的神经电和血液动力学信号中识别网络相互作用有助于解释不同脑区之间的复杂关系。在本文中,提出了多模态功能网络连接 (mFNC) 用于网络空间中 EEG 和 fMRI 的融合。首先,分别使用空间独立成分分析 (ICA) 在每种模态中提取功能网络 (FN)。然后,通过格兰杰因果分析 (GCA) 探索每种模态中 FN 之间的相互作用。最后,使用基于网络的源成像 (NESOI) 将 fMRI FN 与 EEG FN 在空间域中匹配。对合成数据和真实数据的研究表明,mFNC 具有分别揭示每种模态以及它们组合的潜在神经网络的潜力。通过 mFNC,可以揭示 FN 之间的综合关系,从而深入探索特定任务或神经状态下的神经活动和代谢反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/b64f70bcaddd/pone.0024642.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/4271338fd781/pone.0024642.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/70063782bee0/pone.0024642.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/b94c26b87616/pone.0024642.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/70b8b4907f9f/pone.0024642.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/eeb294ee6428/pone.0024642.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/9b09bb037c87/pone.0024642.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/17856377404c/pone.0024642.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/7911f7e89069/pone.0024642.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/be502151231b/pone.0024642.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/b64f70bcaddd/pone.0024642.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/4271338fd781/pone.0024642.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/70063782bee0/pone.0024642.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/b94c26b87616/pone.0024642.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/70b8b4907f9f/pone.0024642.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/eeb294ee6428/pone.0024642.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/9b09bb037c87/pone.0024642.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/17856377404c/pone.0024642.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/7911f7e89069/pone.0024642.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/be502151231b/pone.0024642.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c592/3178514/b64f70bcaddd/pone.0024642.g010.jpg

相似文献

[1]
Multimodal functional network connectivity: an EEG-fMRI fusion in network space.

PLoS One. 2011-9-22

[2]
fMRI functional networks for EEG source imaging.

Hum Brain Mapp. 2010-9-2

[3]
Joint EEG/fMRI state space model for the detection of directed interactions in human brains--a simulation study.

Physiol Meas. 2011-10-25

[4]
Complementary contributions of concurrent EEG and fMRI connectivity for predicting structural connectivity.

Neuroimage. 2017-8-24

[5]
Simultaneous EEG and fMRI: towards the characterization of structure and dynamics of brain networks.

Dialogues Clin Neurosci. 2013-9

[6]
Exploring connectivity with large-scale Granger causality on resting-state functional MRI.

J Neurosci Methods. 2017-8-1

[7]
EEG/fMRI fusion based on independent component analysis: integration of data-driven and model-driven methods.

J Integr Neurosci. 2012-9

[8]
Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study.

Neuroimage. 2010-5-25

[9]
Reconstructing Large-Scale Brain Resting-State Networks from High-Resolution EEG: Spatial and Temporal Comparisons with fMRI.

Brain Connect. 2016-3

[10]
EEG-fMRI reciprocal functional neuroimaging.

Clin Neurophysiol. 2010-4-8

引用本文的文献

[1]
EEG during dynamic facial emotion processing reveals neural activity patterns associated with autistic traits in children.

Cereb Cortex. 2025-2-5

[2]
EEG During Dynamic Facial Emotion Processing Reveals Neural Activity Patterns Associated with Autistic Traits in Children.

bioRxiv. 2024-8-28

[3]
Minimizing the distortions in electrophysiological source imaging of cortical oscillatory activity Spectral Structured Sparse Bayesian Learning.

Front Neurosci. 2023-3-15

[4]
A revisit of the amygdala theory of autism: Twenty years after.

Neuropsychologia. 2023-5-3

[5]
When Is Simultaneous Recording Necessary? A Guide for Researchers Considering Combined EEG-fMRI.

Front Neurosci. 2021-6-29

[6]
Effect of corpus callosum agenesis on the language network in children and adolescents.

Brain Struct Funct. 2021-4

[7]
Disrupted core-periphery structure of multimodal brain networks in Alzheimer's disease.

Netw Neurosci. 2019-5-1

[8]
Multiplex core-periphery organization of the human connectome.

J R Soc Interface. 2018-9-12

[9]
Multimodal approaches to functional connectivity in autism spectrum disorders: An integrative perspective.

Dev Neurobiol. 2017-12-27

[10]
Large-Scale Functional Networks Identified from Resting-State EEG Using Spatial ICA.

PLoS One. 2016-1-19

本文引用的文献

[1]
Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal.

Neuron. 2011-2-10

[2]
Bayesian symmetrical EEG/fMRI fusion with spatially adaptive priors.

Neuroimage. 2010-12-2

[3]
fMRI functional networks for EEG source imaging.

Hum Brain Mapp. 2010-9-2

[4]
A comparative study of different references for EEG default mode network: the use of the infinity reference.

Clin Neurophysiol. 2010-6-12

[5]
Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation.

Neuroimage. 2010-3-6

[6]
Nonlinear connectivity by Granger causality.

Neuroimage. 2010-2-2

[7]
A parallel framework for simultaneous EEG/fMRI analysis: methodology and simulation.

Neuroimage. 2010-1-18

[8]
Effect of hemodynamic variability on Granger causality analysis of fMRI.

Neuroimage. 2009-12-11

[9]
An information theoretic approach to EEG-fMRI integration of visually evoked responses.

Neuroimage. 2009-7-24

[10]
EEG source imaging with spatio-temporal tomographic nonnegative independent component analysis.

Hum Brain Mapp. 2009-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索