Niketeghad Soroush, Hebb Adam O, Nedrud Joshua, Hanrahan Sara J, Mahoor Mohammad H
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:3793-6. doi: 10.1109/EMBC.2014.6944449.
Deep Brain Stimulation (DBS) has been a successful technique for alleviating Parkinson's disease (PD) symptoms especially for whom drug therapy is no longer efficient. Existing DBS therapy is open-loop, providing a time invariant stimulation pulse train that is not customized to the patient's current behavioral task. By customizing this pulse train to the patient's current task the side effects may be suppressed. This paper introduces a method for single trial recognition of the patient's current task using the local field potential (LFP) signals. This method utilizes wavelet coefficients as features and support vector machine (SVM) as the classifier for recognition of a selection of behaviors: speech, motor, and random. The proposed method is 82.4% accurate for the binary classification and 73.2% for classifying three tasks. These algorithms will be applied in a closed loop feedback control system to optimize DBS parameters to the patient's real time behavioral goals.
深部脑刺激(DBS)已成为缓解帕金森病(PD)症状的一种成功技术,特别是对于药物治疗不再有效的患者。现有的DBS治疗是开环的,提供一个时不变的刺激脉冲序列,该序列不是根据患者当前的行为任务定制的。通过根据患者当前任务定制此脉冲序列,副作用可能会得到抑制。本文介绍了一种使用局部场电位(LFP)信号对患者当前任务进行单次试验识别的方法。该方法利用小波系数作为特征,并使用支持向量机(SVM)作为分类器来识别一系列行为:言语、运动和随机行为。所提出的方法在二分类中准确率为82.4%,在对三个任务进行分类时准确率为73.2%。这些算法将应用于闭环反馈控制系统,以根据患者的实时行为目标优化DBS参数。