Suppr超能文献

LFP-Net:一种使用大脑底丘脑核局部场电位(STN-LFP)信号识别人类行为活动的深度学习框架。

LFP-Net: A deep learning framework to recognize human behavioral activities using brain STN-LFP signals.

作者信息

Golshan Hosein M, Hebb Adam O, Mahoor Mohammad H

机构信息

ECE Department, University of Denver, Denver, CO, USA.

Kaiser Hospital, Denver, CO, USA.

出版信息

J Neurosci Methods. 2020 Apr 1;335:108621. doi: 10.1016/j.jneumeth.2020.108621. Epub 2020 Feb 3.

Abstract

BACKGROUND

Recognition of human behavioral activities using local field potential (LFP) signals recorded from the Subthalamic Nuclei (STN) has applications in developing the next generation of deep brain stimulation (DBS) systems. DBS therapy is often used for patients with Parkinson's disease (PD) when medication cannot effectively tackle patients' motor symptoms. A DBS system capable of adaptively adjusting its parameters based on patients' activities may optimize therapy while reducing the stimulation side effects and improving the battery life.

METHOD

STN-LFP reveals motor and language behavior, making it a reliable source for behavior classification. This paper presents LFP-Net, an automated machine learning framework based on deep convolutional neural networks (CNN) for classification of human behavior using the time-frequency representation of STN-LFPs within the beta frequency range. CNNs learn different features based on the beta power patterns associated with different behaviors. The features extracted by the CNNs are passed through fully connected layers and then to the softmax layer for classification.

RESULTS

Our experiments on ten PD patients performing three behavioral tasks including "button press", "target reaching", and "speech" show that the proposed approach obtains an average classification accuracy of ∼88 %. Comparison with existing methods: The proposed method outperforms other state-of-the-art classification methods based on STN-LFP signals. Compared to well-known deep neural networks such as AlexNet, our approach gives a higher accuracy using significantly fewer parameters.

CONCLUSIONS

CNNs show a high performance in decoding the brain neural response, which is crucial in designing the automatic brain-computer interfaces and closed-loop systems.

摘要

背景

利用从丘脑底核(STN)记录的局部场电位(LFP)信号来识别人类行为活动,在开发下一代深部脑刺激(DBS)系统中具有应用价值。当药物无法有效解决帕金森病(PD)患者的运动症状时,DBS疗法常被用于这些患者。一个能够根据患者活动自适应调整参数的DBS系统,可能会优化治疗效果,同时减少刺激副作用并延长电池寿命。

方法

STN-LFP揭示了运动和语言行为,使其成为行为分类的可靠来源。本文提出了LFP-Net,这是一种基于深度卷积神经网络(CNN)的自动化机器学习框架,用于使用β频率范围内STN-LFP的时频表示对人类行为进行分类。CNNs根据与不同行为相关的β功率模式学习不同的特征。由CNNs提取的特征通过全连接层,然后传递到softmax层进行分类。

结果

我们对十名进行“按键”“目标到达”和“言语”这三项行为任务的PD患者进行的实验表明,所提出的方法获得了约88%的平均分类准确率。与现有方法的比较:所提出的方法优于基于STN-LFP信号的其他先进分类方法。与诸如AlexNet等知名深度神经网络相比,我们的方法使用显著更少的参数却给出了更高的准确率。

结论

CNNs在解码脑神经反应方面表现出高性能,这在设计自动脑机接口和闭环系统中至关重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验