Sazonova Nadezhda, Browning Raymond, Melanson Edward, Sazonov Edward
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:4163-7. doi: 10.1109/EMBC.2014.6944541.
The use of wearable sensors coupled with the processing power of mobile phones may be an attractive way to provide real-time feedback about physical activity and energy expenditure (EE). Here we describe use of a shoe-based wearable sensor system (SmartShoe) with a mobile phone for real-time prediction and display of time spent in various postures/physical activities and the resulting EE. To deal with processing power and memory limitations of the phone, we introduce new algorithms that require substantially less computational power. The algorithms were validated using data from 15 subjects who performed up to 15 different activities of daily living during a four-hour stay in a room calorimeter. Use of Multinomial Logistic Discrimination (MLD) for posture and activity classification resulted in an accuracy comparable to that of Support Vector Machines (SVM) (90% vs. 95%-98%) while reducing the running time by a factor of 190 and reducing the memory requirement by a factor of 104. Per minute EE estimation using activity-specific models resulted in an accurate EE prediction (RMSE of 0.53 METs vs. RMSE of 0.69 METs using previously reported SVM-branched models). These results demonstrate successful implementation of real-time physical activity monitoring and EE prediction system on a wearable platform.
将可穿戴传感器与手机的处理能力相结合,可能是一种提供有关身体活动和能量消耗(EE)实时反馈的有吸引力的方式。在此,我们描述了一种基于鞋子的可穿戴传感器系统(智能鞋)与手机配合使用,用于实时预测和显示在各种姿势/身体活动中所花费的时间以及由此产生的能量消耗。为了应对手机的处理能力和内存限制,我们引入了所需计算能力大幅降低的新算法。这些算法使用来自15名受试者的数据进行了验证,这些受试者在房间热量计中停留4小时期间进行了多达15种不同的日常生活活动。使用多项逻辑判别(MLD)进行姿势和活动分类,其准确率与支持向量机(SVM)相当(分别为90%和95%-98%),同时运行时间减少了190倍,内存需求减少了104倍。使用特定活动模型进行每分钟能量消耗估计,实现了准确的能量消耗预测(均方根误差为0.53代谢当量,而使用先前报道的SVM分支模型时均方根误差为0.69代谢当量)。这些结果证明了在可穿戴平台上成功实现了实时身体活动监测和能量消耗预测系统。