Akter Masuma, Lambert Andrew J, Pickering Mark R, Scarvell Jennie M, Smith Paul N
Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5121-4. doi: 10.1109/EMBC.2014.6944777.
A limitation to accurate automatic tracking of knee motion is the noise and blurring present in low dose X-ray fluoroscopy images. For more accurate tracking, this noise should be reduced while preserving anatomical structures such as bone. Noise in low dose X-ray images is generated from different sources, however quantum noise is by far the most dominant. In this paper we present an accurate multi-modal image registration algorithm which successfully registers 3D CT to 2D single plane low dose noisy and blurred fluoroscopy images that are captured for healthy knees. The proposed algorithm uses a new registration framework including a filtering method to reduce the noise and blurring effect in fluoroscopy images. Our experimental results show that the extra pre-filtering step included in the proposed approach maintains higher accuracy and repeatability for in vivo knee joint motion analysis.
准确自动跟踪膝关节运动的一个限制因素是低剂量X射线透视图像中存在的噪声和模糊。为了实现更精确的跟踪,应在保留骨骼等解剖结构的同时减少这种噪声。低剂量X射线图像中的噪声由不同来源产生,然而量子噪声是迄今为止最主要的。在本文中,我们提出了一种精确的多模态图像配准算法,该算法成功地将三维计算机断层扫描(3D CT)与为健康膝关节拍摄的二维单平面低剂量、有噪声且模糊的透视图像进行配准。所提出的算法使用了一个新的配准框架,其中包括一种滤波方法,以减少透视图像中的噪声和模糊效果。我们的实验结果表明,所提出方法中包含的额外预滤波步骤在体内膝关节运动分析中保持了更高的准确性和可重复性。