Suppr超能文献

基于梯度向量流的方法在计算机断层扫描图像上进行放射治疗的全自动椎管分割:一项初步研究。

Fully automatic spinal canal segmentation for radiation therapy using a gradient vector flow-based method on computed tomography images: A preliminary study.

作者信息

Díaz-Parra Antonio, Arana Estanislao, Moratal David

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:5518-21. doi: 10.1109/EMBC.2014.6944876.

Abstract

Nowadays, radiotherapy is one of the key techniques for localized cancer treatment. Accurate identification of target volume (TV) and organs at risk (OAR) is a crucial step to therapy success. Spinal cord is one of the most radiosensitive OAR and its localization tends to be an observer-dependent and time-consuming task. Hence, numerous studies have aimed to carry out the contouring automatically. In CT images, there is a lack of contrast between soft tissues, making more challenge the delineation. That is the reason why the majority of researches have focused on spinal canal segmentation rather than spinal cord. In this work, we propose a fully automated method for spinal canal segmentation using a Gradient Vector Flow-based (GVF) algorithm. An experienced radiologist performed the manual segmentation, generating the ground truth. The method was evaluated on three different patients using the Dice coefficient, obtaining the following results: 79.50%, 83.77%, and 81.88%, respectively. Outcome reveals that more research has to be performed to improve the accuracy of the method.

摘要

如今,放射治疗是局部癌症治疗的关键技术之一。准确识别靶区(TV)和危及器官(OAR)是治疗成功的关键步骤。脊髓是最易受辐射影响的OAR之一,其定位往往依赖于观察者且耗时。因此,许多研究旨在实现自动轮廓勾画。在CT图像中,软组织之间缺乏对比度,使得轮廓勾画更具挑战性。这就是大多数研究集中在椎管分割而非脊髓分割的原因。在这项工作中,我们提出了一种基于梯度向量流(GVF)算法的椎管分割全自动方法。一位经验丰富的放射科医生进行了手动分割,生成了真实数据。该方法在三名不同患者身上使用骰子系数进行评估,分别得到以下结果:79.50%、83.77%和81.88%。结果表明,还需要进行更多研究以提高该方法的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验