Suppr超能文献

基于运动想象的脑机接口中受试者间自适应以减少校准时间

Subject-to-subject adaptation to reduce calibration time in motor imagery-based brain-computer interface.

作者信息

Arvaneh Mahnaz, Robertson Ian, Ward Tomas E

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2014;2014:6501-4. doi: 10.1109/EMBC.2014.6945117.

Abstract

In order to enhance the usability of a motor imagery-based brain-computer interface (BCI), it is highly desirable to reduce the calibration time. Due to inter-subject variability, typically a new subject has to undergo a 20-30 minutes calibration session to collect sufficient data for training a BCI model based on his/her brain patterns. This paper proposes a new subject-to-subject adaptation algorithm to reliably reduce the calibration time of a new subject to only 3-4 minutes. To reduce the calibration time, unlike several past studies, the proposed algorithm does not require a large pool of historic sessions. In the proposed algorithm, using only a few trials from the new subject, first, the new subject's data is adapted to each available historic session separately. This is done by a linear transformation minimizing the distribution difference between the two groups of EEG data. Thereafter, among the available historic sessions, the one matched the most to the new subject's adapted data is selected as the calibration session. Consequently, the previously trained model based on the selected historic session is entirely used for the classification of the new subject's data after adaptation. The proposed algorithm is evaluated on a publicly available dataset with 9 subjects. For each subject, the calibration session is selected only from the calibration sessions of the eight other subjects. The experimental results showed that our proposed algorithm not only reduced the calibration time by 85%, but also performed on average only 1.7% less accurate than the subject-dependent calibration results.

摘要

为了提高基于运动想象的脑机接口(BCI)的可用性,非常希望减少校准时间。由于个体差异,通常新受试者必须进行20 - 30分钟的校准过程,以收集足够的数据来基于其脑电模式训练BCI模型。本文提出了一种新的受试者间适应算法,可将新受试者的校准时间可靠地减少至仅3 - 4分钟。为了减少校准时间,与过去的一些研究不同,该算法不需要大量历史数据。在所提出的算法中,仅使用新受试者的少量试验,首先将新受试者的数据分别适配到每个可用的历史数据中。这通过线性变换来实现,该变换可最小化两组脑电数据之间的分布差异。此后,在可用的历史数据中,选择与新受试者适配数据匹配度最高的作为校准数据。因此,基于所选历史数据预先训练的模型在适配后完全用于新受试者数据的分类。该算法在一个包含9名受试者的公开数据集上进行了评估。对于每个受试者,校准数据仅从其他8名受试者的数据中选择。实验结果表明,我们提出的算法不仅将校准时间减少了85%,而且平均准确率仅比依赖受试者的校准结果低1.7%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验