Suppr超能文献

细胞外钙离子诱导的小鼠低钾骨骼肌力量恢复涉及细胞内钾离子浓度升高:对疲劳的影响

Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue.

作者信息

Cairns Simeon P, Leader John P, Loiselle Denis S, Higgins Amanda, Lin Wei, Renaud Jean-Marc

机构信息

Sports Performance Research Institute New Zealand, School of Sport and Recreation, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand; Health and Rehabilitation Research Institute, Faculty of Health and Environmental Sciences, AUT University, Auckland, New Zealand;

Department of Medicine, University of Otago, Dunedin, New Zealand; Department of Physiology, University of Otago, Dunedin, New Zealand;

出版信息

J Appl Physiol (1985). 2015 Mar 15;118(6):662-74. doi: 10.1152/japplphysiol.00705.2013. Epub 2015 Jan 8.

Abstract

We examined whether a Ca(2+)-K(+) interaction was a potential mechanism operating during fatigue with repeated tetani in isolated mouse muscles. Raising the extracellular Ca(2+) concentration ([Ca(2+)]o) from 1.3 to 10 mM in K(+)-depressed slow-twitch soleus and/or fast-twitch extensor digitorum longus muscles caused the following: 1) increase of intracellular K(+) activity by 20-60 mM (raised intracellular K(+) content, unchanged intracellular fluid volume), so that the K(+)-equilibrium potential increased by ∼10 mV and resting membrane potential repolarized by 5-10 mV; 2) large restoration of action potential amplitude (16-54 mV); 3) considerable recovery of excitable fibers (∼50% total); and 4) restoration of peak force with the peak tetanic force-extracellular K(+) concentration ([K(+)]o) relationship shifting rightward toward higher [K(+)]o. Double-sigmoid curve-fitting to fatigue profiles (125 Hz for 500 ms, every second for 100 s) showed that prior exposure to raised [K(+)]o (7 mM) increased, whereas lowered [K(+)]o (2 mM) decreased, the rate and extent of force loss during the late phase of fatigue (second sigmoid) in soleus, hence implying a K(+) dependence for late fatigue. Prior exposure to 10 mM [Ca(2+)]o slowed late fatigue in both muscle types, but was without effect on the extent of fatigue. These combined findings support our notion that a Ca(2+)-K(+) interaction is plausible during severe fatigue in both muscle types. We speculate that a diminished transsarcolemmal K(+) gradient and lowered [Ca(2+)]o contribute to late fatigue through reduced action potential amplitude and excitability. The raised [Ca(2+)]o-induced slowing of fatigue is likely to be mediated by a higher intracellular K(+) activity, which prolongs the time before stimulation-induced K(+) efflux depolarizes the sarcolemma sufficiently to interfere with action potentials.

摘要

我们研究了在离体小鼠肌肉中,重复强直刺激导致疲劳的过程中,Ca(2+)-K(+)相互作用是否是一种潜在的作用机制。在低钾抑制的慢肌比目鱼肌和/或快肌趾长伸肌中,将细胞外Ca(2+)浓度([Ca(2+)]o)从1.3 mM提高到10 mM会产生以下结果:1)细胞内K(+)活性增加20 - 60 mM(细胞内K(+)含量升高,细胞内液体积不变),使得K(+)平衡电位增加约10 mV,静息膜电位复极化5 - 10 mV;2)动作电位幅度大幅恢复(16 - 54 mV);3)可兴奋纤维显著恢复(约占总数的50%);4)峰值力恢复,强直收缩峰值力-细胞外K(+)浓度([K(+)]o)关系向右移向更高的[K(+)]o。对疲劳曲线(125 Hz,持续500 ms,每秒一次,共100 s)进行双S形曲线拟合表明,预先暴露于升高的[K(+)]o(7 mM)会增加比目鱼肌疲劳后期(第二个S形)力损失的速率和程度,而降低的[K(+)]o(2 mM)则会降低,这意味着后期疲劳存在K(+)依赖性。预先暴露于10 mM [Ca(2+)]o会减缓两种肌肉类型的后期疲劳,但对疲劳程度没有影响。这些综合发现支持了我们的观点,即在两种肌肉类型的严重疲劳过程中,Ca(2+)-K(+)相互作用是合理的。我们推测,跨肌膜K(+)梯度减小和[Ca(2+)]o降低通过降低动作电位幅度和兴奋性导致后期疲劳。升高的[Ca(2+)]o诱导的疲劳减缓可能是由较高的细胞内K(+)活性介导的,这延长了刺激诱导的K(+)外流使肌膜充分去极化以干扰动作电位之前的时间。

相似文献

1
Extracellular Ca2+-induced force restoration in K+-depressed skeletal muscle of the mouse involves an elevation of [K+]i: implications for fatigue.
J Appl Physiol (1985). 2015 Mar 15;118(6):662-74. doi: 10.1152/japplphysiol.00705.2013. Epub 2015 Jan 8.
2
Role of extracellular [Ca2+] in fatigue of isolated mammalian skeletal muscle.
J Appl Physiol (1985). 1998 Apr;84(4):1395-406. doi: 10.1152/jappl.1998.84.4.1395.
3
Changes of surface and t-tubular membrane excitability during fatigue with repeated tetani in isolated mouse fast- and slow-twitch muscle.
J Appl Physiol (1985). 2009 Jan;106(1):101-12. doi: 10.1152/japplphysiol.90878.2008. Epub 2008 Oct 23.
4
The peak force-resting membrane potential relationships of mouse fast- and slow-twitch muscle.
Am J Physiol Cell Physiol. 2022 Jun 1;322(6):C1151-C1165. doi: 10.1152/ajpcell.00401.2021. Epub 2022 Apr 6.
5
The potassium-glycogen interaction on force and excitability in mouse skeletal muscle: implications for fatigue.
J Physiol. 2023 Dec;601(24):5669-5687. doi: 10.1113/JP285129. Epub 2023 Nov 7.
7
Different effects of raised [K+]o on membrane potential and contraction in mouse fast- and slow-twitch muscle.
Am J Physiol. 1997 Aug;273(2 Pt 1):C598-611. doi: 10.1152/ajpcell.1997.273.2.C598.
9
Moderately elevated extracellular [K] potentiates submaximal force and power in skeletal muscle via increased [Ca] during contractions.
Am J Physiol Cell Physiol. 2019 Nov 1;317(5):C900-C909. doi: 10.1152/ajpcell.00104.2019. Epub 2019 Aug 14.
10
Protective role of extracellular chloride in fatigue of isolated mammalian skeletal muscle.
Am J Physiol Cell Physiol. 2004 Sep;287(3):C762-70. doi: 10.1152/ajpcell.00589.2003. Epub 2004 May 19.

引用本文的文献

1
Lactic acidosis: implications for human exercise performance.
Eur J Appl Physiol. 2025 Mar 15. doi: 10.1007/s00421-025-05750-0.
2
Exercise and fatigue: integrating the role of K, Na and Cl in the regulation of sarcolemmal excitability of skeletal muscle.
Eur J Appl Physiol. 2023 Nov;123(11):2345-2378. doi: 10.1007/s00421-023-05270-9. Epub 2023 Aug 16.
4
Regulation of muscle potassium: exercise performance, fatigue and health implications.
Eur J Appl Physiol. 2021 Mar;121(3):721-748. doi: 10.1007/s00421-020-04546-8. Epub 2021 Jan 4.
5
Lower Ca2+ enhances the K+-induced force depression in normal and HyperKPP mouse muscles.
J Gen Physiol. 2020 Jul 6;152(7). doi: 10.1085/jgp.201912511.

本文引用的文献

1
The KATP channel Kir6.2 subunit content is higher in glycolytic than oxidative skeletal muscle fibers.
Am J Physiol Regul Integr Comp Physiol. 2011 Oct;301(4):R916-25. doi: 10.1152/ajpregu.00663.2010. Epub 2011 Jun 29.
3
Volume regulation in mammalian skeletal muscle: the role of sodium-potassium-chloride cotransporters during exposure to hypertonic solutions.
J Physiol. 2011 Jun 1;589(Pt 11):2887-99. doi: 10.1113/jphysiol.2011.206730. Epub 2011 Apr 11.
5
Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca2+ influx and muscle fatigue.
Pflugers Arch. 2011 Jan;461(1):115-22. doi: 10.1007/s00424-010-0883-4. Epub 2010 Oct 6.
6
Toward the roles of store-operated Ca2+ entry in skeletal muscle.
Pflugers Arch. 2010 Oct;460(5):813-23. doi: 10.1007/s00424-010-0856-7. Epub 2010 Jun 25.
8
Role of TRPC1 channel in skeletal muscle function.
Am J Physiol Cell Physiol. 2010 Jan;298(1):C149-62. doi: 10.1152/ajpcell.00241.2009. Epub 2009 Oct 21.
9
Potassium-transporting proteins in skeletal muscle: cellular location and fibre-type differences.
Acta Physiol (Oxf). 2010 Feb;198(2):105-23. doi: 10.1111/j.1748-1716.2009.02043.x. Epub 2009 Sep 21.
10
Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscle.
J Physiol. 2009 May 15;587(Pt 10):2299-312. doi: 10.1113/jphysiol.2009.168682. Epub 2009 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验